Journal is indexed in following databases:



2024 Journal Impact Factor - 0.6
2024 CiteScore - 1.9



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
Survey on Intentional Interference Techniques of GNSS Signals and Radio Links between Unmanned Aerial Vehicle and Ground Control Station
1 Cyber Defense Forces Component Command, Warsaw, Poland
2 Military University of Technology, Warsaw, Poland
ABSTRACT: With the rapid development of unmanned aerial vehicle (UAV) technology, UAVs are gaining increasing importance in civilian, industrial, and military applications. UAVs are used for environmental monitoring, medical deliveries, emergency response, and reconnaissance missions. However, their widespread use also introduces new security challenges, driving the advancement of counter-unmanned aerial systems (C-UASs). This paper provides a comprehensive review of intentional interference techniques targeting the radio links between UAVs and ground control stations, as well as global navigation satellite system (GNSS) signals, which are essential for autonomous and remote-controlled UAV one operations. The paper examines the radio frequency spectrum utilized by UAVs and characterizes their typical radio emissions. It presents a detailed classification of jamming methods, ranging from conventional noise jamming to advanced intelligent jamming and spoofing techniques. Furthermore, it explores a wide range of spoofing attacks against GNSS receivers, including replay attacks, signal forgery, estimation-based spoofing, and cooperative advanced methods. Each technique is analyzed in terms of implementation complexity and operational effectiveness. In addition, the paper highlights commercial C-UAS solutions, showcasing practical approaches to UAV mitigation through targeted signal disruption. This review offers an in-depth overview of current threats and defense technologies, serving as a foundation for future research on adaptive and selective UAV neutralization methods.
REFERENCES
S. A. H. Mohsan, N. Q. H. Othman, Y. Li, M. H. Alsharif, and M. A. Khan, “Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends,” Intel Serv Robotics, vol. 16, no. 1, pp. 109–137, Mar. 2023, doi: 10.1007/s11370-022-00452-4. - doi:10.1007/s11370-022-00452-4
K. Bednarz, J. Wojtuń, J. M. Kelner, and K. Różyc, “Frequency instability impact of low-cost SDRs on Doppler-based localization accuracy,” Sensors, vol. 24, no. 4, Art. no. 4, Jan. 2024, doi: 10.3390/s24041053. - doi:10.3390/s24041053
G. E. Jeler, “Military and civilian applications of UAV systems,” in 2019 International Scientific Conference Strategies XXI. The Complex and Dynamic Nature of the Security Environment, Bucharest, Romania, Nov. 2019, pp. 379–386. Accessed: July 24, 2025. [Online]. Available: https://www.ceeol.com/search/chapter-detail?id=824918
J. Skóra, “The use of unmanned aerial vehicles in the context of ensuring security in the state,” Aviation and Security Issues, vol. 1, no. 1, Art. no. 1, July 2022, doi: 10.55676/asi.v1i1.7. - doi:10.55676/asi.v1i1.7
W. Shin and M. Vaezi, “UAV-enabled cellular networks,” in 5G and beyond: Fundamentals and standards, X. Lin and N. Lee, Eds., Cham, Switzerland: Springer International Publishing, 2021, pp. 165–200. doi: 10.1007/978-3-030-58197-8_6. - doi:10.1007/978-3-030-58197-8_6
H. Jinke, F. Guoqiang, and Z. Boxin, “Research on autonomy of UAV system,” in 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, Nov. 2021, pp. 745–750. doi: 10.1109/AUTEEE52864.2021.9668730. - doi:10.1109/AUTEEE52864.2021.9668730
I. Al-Darraji et al., “A technical framework for selection of autonomous UAV navigation technologies and sensors,” Computers, Materials & Continua, vol. 68, no. 2, pp. 2771–2790, 2021, doi: 10.32604/cmc.2021.017236. - doi:10.32604/cmc.2021.017236
P. R. Sriram, S. K. Ramani, R. V. Shrivatsav, M. M.Mankiandan, and N. Ayyappaa, “Autonomous drone for defence machinery maintenance and surveillance,” in 2019 3rd World Conference on Smart Trends in Systems Security and Sustainablity (WorldS4), London, UK, July 2019, pp. 288–292. doi: 10.1109/WorldS4.2019.8904014. - doi:10.1109/WorldS4.2019.8904014
A. Cheranyov and E. Dukhan, “Methods of detecting small unmanned aerial vehicles,” in 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, May 2021, pp. 0218–0221. doi: 10.1109/USBEREIT51232.2021.9455043. - doi:10.1109/USBEREIT51232.2021.9455043
S. Park, H. T. Kim, S. Lee, H. Joo, and H. Kim, “Survey on anti-drone systems: Components, designs, and challenges,” IEEE Access, vol. 9, pp. 42635–42659, 2021, doi: 10.1109/ACCESS.2021.3065926. - doi:10.1109/ACCESS.2021.3065926
R. Di Pietro, G. Oligeri, and P. Tedeschi, “JAM-ME: Exploiting jamming to accomplish drone mission,” in 2019 IEEE Conference on Communications and Network Security (CNS), Washington, DC, USA, June 2019, pp. 1–9. doi: 10.1109/CNS.2019.8802717. - doi:10.1109/CNS.2019.8802717
M. A. Jasim, H. Shakhatreh, N. Siasi, A. H. Sawalmeh, A. Aldalbahi, and A. Al-Fuqaha, “A survey on spectrum management for unmanned aerial vehicles (UAVs),” IEEE Access, vol. 10, pp. 11443–11499, 2022, doi: 10.1109/ACCESS.2021.3138048. - doi:10.1109/ACCESS.2021.3138048
D. Zmysłowski, M. Kryk, and J. M. Kelner, “Testing GNSS receiver robustness for jamming,” Aviation and Security Issues, vol. 4, no. 2, Art. no. 2, Dec. 2023, doi: 10.55676/asi.v4i2.64. - doi:10.55676/asi.v4i2.64
X. Liu, H. Wang, X. Yang, and J. Wang, “Quad-band circular polarized antenna for GNSS, 5G and WIFI-6E applications,” Electronics, vol. 11, no. 7, Art. no. 7, Jan. 2022, doi: 10.3390/electronics11071133. - doi:10.3390/electronics11071133
H. Lv, F. Liu, and N. Yuan, “Drone presence detection by the drone’s RF communication,” J. Phys.: Conf. Ser., vol. 1738, no. 1, p. 012044, Jan. 2021, doi: 10.1088/1742-6596/1738/1/012044. - doi:10.1088/1742-6596/1738/1/012044
J.-C. Juang, C.-T. Tsai, and Y.-H. Chen, “Development of a PC-based software receiver for the reception of Beidou navigation satellite signals,” The Journal of Navigation, vol. 66, no. 5, pp. 701–718, Sept. 2013, doi: 10.1017/S0373463313000271. - doi:10.1017/S0373463313000271
N. M. Stojanović, B. M. Todorović, and V. B. Ristić, “Analysis of repeater jamming of a slow frequency hopping radio,” Vojnotehnicki glasnik/Military Technical Courier, vol. 70, no. 3, pp. 664–679, 2022, doi: 10.5937/vojtehg70-37535. - doi:10.5937/vojtehg70-37535
O. Šimon and T. Götthans, “A survey on the use of deep learning techniques for UAV jamming and deception,” Electronics, vol. 11, no. 19, Art. no. 19, Jan. 2022, doi: 10.3390/electronics11193025. - doi:10.3390/electronics11193025
P. Skokowski et al., “Practical trial for low-energy effective jamming on private networks with 5G-NR and NB-IoT radio interfaces,” IEEE Access, vol. 12, pp. 51523–51535, 2024, doi: 10.1109/ACCESS.2024.3385630. - doi:10.1109/ACCESS.2024.3385630
Y. Bai, “Research on GNSS spatial signal interference evaluation and suppression method,” PhD thesis, University of Chinese Academy of Sciences., Beijing, China, 2014.
Z. Chong et al., “Research on the mechanism and the impact of jamming on Beidou software receiver,” in 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, Aug. 2016, pp. 198–202. doi: 10.1109/CGNCC.2016.7828783. - doi:10.1109/CGNCC.2016.7828783
V. Chamola, P. Kotesh, A. Agarwal, Naren, N. Gupta, and M. Guizani, “A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques,” Ad Hoc Networks, vol. 111, p. 102324, Feb. 2021, doi: 10.1016/j.adhoc.2020.102324. - doi:10.1016/j.adhoc.2020.102324
H. Paik, N. N. Sastry, and I. SantiPrabha, “Effectiveness of noise jamming with white Gaussian noise and phase noise in amplitude comparison monopulse radar receivers,” in 2014 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, Jan. 2014, pp. 1–5. doi: 10.1109/CONECCT.2014.6740286. - doi:10.1109/CONECCT.2014.6740286
O. Šimon, T. Götthans, and M. Popela, “Commercial UAV jamming possibilities,” in 2022 32nd International Conference Radioelektronika (RADIOELEKTRONIKA), Kosice, Slovakia, Apr. 2022, pp. 1–6. doi: 10.1109/RADIOELEKTRONIKA54537.2022.9764904. - doi:10.1109/RADIOELEKTRONIKA54537.2022.9764904
P. Skokowski and J. Dułowicz, “Autonomous mobile system for detecting and jamming cellular network signals using a software defined radio integrated into a UAV platform,” in 2023 Signal Processing Symposium (SPSympo), Karpacz, Poland, Sept. 2023, pp. 149–151. doi: 10.23919/SPSympo57300.2023.10302702. - doi:10.23919/SPSympo57300.2023.10302702
A. Brito, P. Sebastião, and N. Souto, “Jamming for unauthorized UAV operations-communications link,” in 2019 International Young Engineers Forum (YEF-ECE), Costa da Caparica, Portugal, May 2019, pp. 94–98. doi: 10.1109/YEF-ECE.2019.8740828. - doi:10.1109/YEF-ECE.2019.8740828
K. Pärlin, M. M. Alam, and Y. Le Moullec, “Jamming of UAV remote control systems using software defined radio,” in 2018 International Conference on Military Communications and Information Systems (ICMCIS), Warsaw, Poland, May 2018, pp. 1–6. doi: 10.1109/ICMCIS.2018.8398711. - doi:10.1109/ICMCIS.2018.8398711
E. Horton and P. Ranganathan, “Development of a GPS spoofing apparatus to attack a DJI Matrice 100 quadcopter,” J. Glob. Position. Syst., vol. 16, no. 1, p. 9, July 2018, doi: 10.1186/s41445-018-0018-3. - doi:10.1186/s41445-018-0018-3
M. Haluza and J. Čechák, “Analysis and decoding of radio signals for remote control of drones,” in 2016 New Trends in Signal Processing (NTSP), Demanovska Dolina, Slovakia, Oct. 2016, pp. 1–5. doi: 10.1109/NTSP.2016.7747781. - doi:10.1109/NTSP.2016.7747781
Z. Wu, Y. Zhang, Y. Yang, C. Liang, and R. Liu, “Spoofing and anti-spoofing technologies of global navigation satellite system: A survey,” IEEE Access, vol. 8, pp. 165444–165496, 2020, doi: 10.1109/ACCESS.2020.3022294. - doi:10.1109/ACCESS.2020.3022294
E. Schmidt, Z. Ruble, D. Akopian, and D. J. Pack, “Software-defined radio GNSS instrumentation for spoofing mitigation: A review and a case study,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 8, pp. 2768–2784, Aug. 2019, doi: 10.1109/TIM.2018.2869261. - doi:10.1109/TIM.2018.2869261
L. Huang, Z. C. Li, and F. X. Wang, “Spoofing pattern research on GNSS receivers,” Journal of Astronautics, vol. 33, no. 7, pp. 884–890, July 2012.
K. Wesson, M. Rothlisberger, and T. Humphreys, “Practical cryptographic civil GPS signal authentication,” NAVIGATION, vol. 59, no. 3, pp. 177–193, 2012, doi: 10.1002/navi.14. - doi:10.1002/navi.14
S. Wang, J. Gao, Y. Wang, J. Liu, and H. Li, “GPS repeater deception jamming technology based on delay control,” Missiles Space Vehicles, vol. 352, no. 2, pp. 103–106, 2017.
J. Zidan, E. I. Adegoke, E. Kampert, S. A. Birrell, C. R. Ford, and M. D. Higgins, “GNSS vulnerabilities and existing solutions: A review of the literature,” IEEE Access, vol. 9, pp. 153960–153976, 2021, doi: 10.1109/ACCESS.2020.2973759. - doi:10.1109/ACCESS.2020.2973759
Z. Gao and F. Meng, “Principle and simulation research of GPS repeater deception jamming,” Journal of Telemetry, Tracking and Command, vol. 32, no. 6, pp. 44–47, Nov. 2011.
L. Huang, H. Gong, X. Zhu, and F. Wang, “Research of re-radiating spoofing technique to GNSS timing receiver,” Journal of National University of Defense Technology, vol. 35, no. 4, pp. 93–96, Aug. 2013.
M. L. Psiaki and T. E. Humphreys, “GNSS spoofing and detection,” Proceedings of the IEEE, vol. 104, no. 6, pp. 1258–1270, June 2016, doi: 10.1109/JPROC.2016.2526658. - doi:10.1109/JPROC.2016.2526658
M. Shi, S. Chen, and Z. Liu, “Analysis and optimizing of time-delay in GPS repeater deception,” Journal of Chongqing University of Posts and Telecommunications, vol. 29, no. 1, pp. 56–61, Feb. 2017.
L. Scott, “Anti-spoofing & authenticated signal architectures for civil navigation systems,” in 2003 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS), Portland, OR, USA, Sept. 2003, pp. 1543–1552. Accessed: July 25, 2025. [Online]. Available: http://www.ion.org/publications/abstract.cfm?jp=p&articleID=5339
S. F. Bian, Y. F. Hu, C. Chen, Z. M. Li, and B. Ji, “Research on GNSS repeater spoofing technique for fake position, fake time & fake velocity,” in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, July 2017, pp. 1430–1434. doi: 10.1109/AIM.2017.8014219. - doi:10.1109/AIM.2017.8014219
T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. O’Hanlon, and P. M. Kintner, “Assessing the spoofing threat,” GPS World, vol. 20, no. 1, pp. 28–39, Jan. 2009.
B. S. Margana, D. S. Achanta, K. K. Songala, and S. R. Ammana, “A simple SDR based method to spoof low-end GPS aided drones for securing locations,” in 2021 IEEE International Conference on Robotics, Automation, Artificial-Intelligence and Internet-of-Things (RAAICON), Dhaka, Bangladesh, Dec. 2021, pp. 32–36. doi: 10.1109/RAAICON54709.2021.9929965. - doi:10.1109/RAAICON54709.2021.9929965
B. Dai, M. Xiao, and S. Huang, “GPS spoofing and inducing model of UAV,” Communication Technology, vol. 50, no. 3, pp. 496–501, Mar. 2017.
S. Han, D. Luo, W. Meng, and C. Li, “Antispoofing RAIM for dual-recursion particle filter of GNSS calculation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 2, pp. 836–851, Apr. 2016, doi: 10.1109/TAES.2015.140297. - doi:10.1109/TAES.2015.140297
H. Wang, Z. Yao, Z. Fan, and T. Zheng, “Experiment study of spoofing jamming on GPS receiver,” Fire Control and Command Control, vol. 41, no. 7, pp. 184–187, July 2016.
K. Ma, X. Sun, and Y. Nie, “Research on key technologies of GPS generated spoofing,” Aerospace Electronic Confrontation, vol. 30, no. 6, pp. 24–26, 34, 2014.
“DRONESHIELD DroneGun Tactical,” MSS Defence. Accessed: July 25, 2025. [Online]. Available: https://mssdefence.com/product/droneshield-dronegun-tactical/
“Counter Drone Technology and Anti-UAV Defence Systems,” AUDS. Accessed: July 25, 2025. [Online]. Available: https://www.auds.com/
“Rafael : DRONE DOMETM | Anti Drone System - Counter UAS,” Rafael. Accessed: July 25, 2025. [Online]. Available: https://www.rafael.co.il/system/drone-dome-family/
Citation note:
Dułowicz J., Skokowski P., Kelner J.M.: Survey on Intentional Interference Techniques of GNSS Signals and Radio Links between Unmanned Aerial Vehicle and Ground Control Station. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 19, No. 3, doi:10.12716/1001.19.03.27, pp. 931-939, 2025
Authors in other databases:

Other publications of authors:

D. Zmysłowski, P. Skokowski, K. Malon, K. Maślanka, J.M. Kelner

File downloaded 3 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony