HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
Mobile Radio Beacons in Coastal Reserved Navigation System for Ships
ABSTRACT: At the turn of the 20th and 21st centuries, Global Navigation Satellite Systems (GNSSs) dominated navigation in air, sea, and land. Then, medium-range and long-range terrestrial navigation systems (TNSs) ceased to be developed. However, with the development of GNSS jamming and spoofing techniques, the TNSs are being re-developed, such as the Enhanced Loran. The Polish Ministry of Defense plans to develop and implement a medium-range backup navigation system for the Polish Navy which will operate in the Baltic coastal zone. This plan is a part of the global trend. This paper presents the concept of a reserve TNS (RNS) that is based on the signal Doppler frequency (SDF) location method. In 2016, the concept of the RNS, which is based on stationary radio beacons located on coastal lighthouses, has been presented. From the military viewpoint, the use of the mobile radio beacons, which may change their location, is more justified. Therefore, the paper presents an idea of using the mobile beacons for this purpose. In this paper, effectiveness of the mobile RNS is shown based on simulation studies.
REFERENCES
Groves, P.D. 2013. Principles of GNSS, inertial, and multisensor integrated navigation systems, 2nd ed. Boston, MA, USA: Artech House.
Dardari, D., Luise, M., & Falletti E. (eds) 2016. Satellite and terrestrial radio positioning techniques: A signal processing perspective. Oxford, UK: Academic Press, 2016.
Blanchard, W. 2015 The genesis of the Decca Navigator System. The Journal of Navigation 68(2): 219–237. - doi:10.1017/S0373463314000666
Swanson, E.R. 1983. Omega. Proceedings of the IEEE 71(10): 1140–1155. - doi:10.1109/PROC.1983.12743
Specht, C., Weintrit, A. & Specht, M. 2016. A history of maritime radio-navigation positioning systems used in Poland. The Journal of Navigation 69(3): 468–480. - doi:10.1017/S0373463315000879
Proc, J. 2018. Hyperbolic radionavigation systems. Available: http://jproc.ca/hyperbolic/.
Kayton, M. & Fried, W.R. 1997. Avionics navigation systems, 2nd ed. New York, NY, USA: Wiley-Interscience. - doi:10.1002/9780470172704
van Diggelen, F. 2009. A-GPS: Assisted GPS, GNSS, and SBAS. Boston, MA, USA: Artech House, 2009.
Kaplan, E.D. 2005. Understanding GPS: Principles and applications, 2nd ed. Boston, MA, USA: Artech House.
Chan Y.T. & Ho, K.C. 1994. A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing 42(8): 1905–1915. - doi:10.1109/78.301830
IERS. 2019. Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS). Available: https://www.iers.org/IERS/EN/Science/Techniques/doris.html.
Basker, S., Williams, P., Bransby, M., Last, J.D., Offermans, G. & Helwig, A. 2008. Enhanced Loran: Real-time maritime trials. 2008 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 11–14 April 2008: 792–799. - doi:10.1109/PLANS.2008.4570106
Offermans, G., Johannessen, E., Bartlett, S., Schue, C., Grebnev, A., Bransby, M., Williams, P., Hargreaves, C. 2015. eLoran initial operational capa-bility in the United Kingdom – First results. 2015 International Technical Meeting of the Institute of Navigation, Dana Point, CA, USA, 26–29 January 2015: 27–39.
Küpper, A. 2005. Location-based services: Fundamentals and operation. Chichester, England; Hoboken, NJ, USA: Wiley. - doi:10.1002/0470092335
Iyidir, B. & Ozkazanc, Y. 2004. Jamming of GPS receivers. IEEE 2004 12th Signal Processing and Communications Applications Conference (SIU), Kusadasi, Turkey, 30–30 April 2004: 747–750.
Magiera, J. & Katulski, R.J. 2013. Accuracy of differential phase delay estimation for GPS spoofing detection. 2013 36th International Conference on Telecommunications and Signal Processing (TSP), Rome, Italy, 2–4 July 2013: 695–699. - doi:10.1109/TSP.2013.6614026
Magiera, J. & Katulski, R.J. 2014. Applicability of null-steering for spoofing mitigation in civilian GPS. 2014 IEEE 79th Vehicular Technology Conference (VTC Spring) Seoul, South Korea, 18–21 May 2014: 1–5. - doi:10.1109/VTCSpring.2014.7022835
Magiera, J. & Katulski, R.J. 2015. Detection and mitigation of GPS spoofing based on antenna array processing. Journal of Applied Research and Technology 13(1): 45–57. - doi:10.1016/S1665-6423(15)30004-3
Kelner, J.M., Ziółkowski, C., Nowosielski, L. & Wnuk, M. 2016. Reserve navigation system for ships based on coastal radio beacons. 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), Savannah, GA, USA, 11–14 April 2016: 393–402. - doi:10.1109/PLANS.2016.7479726
OBR CTM S.A. 2019. Research and Development Center for Maritime Technology (in Polish: Ośrodek Badawczo-Rozwojowy Centrum Techniki Morskiej S.A.). Available: https://ctm.gdynia.pl/en/.
Ambroziak, S.J., Katulski, R.J., Sadowski, J., Siwicki, W. & Stefański, J. 2011. Asynchronous and self-organizing radiolocation system – AEGIR. 2011 IEEE International Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 15–17 November 2011: 419–425. - doi:10.1109/THS.2011.6107906
Ambroziak, S.J., Katulski, R.J., Sadowski, J., Siwicki, W. & Stefański, J. 2012. Ground-based radiolocation system – AEGIR. 2012 8th International Symposium on Mechatronics and its Applications (ISMA), Sharjah, United Arab Emirates, 10–12 April 2012: 1–5. - doi:10.1109/ISMA.2012.6215187
Ambroziak S.J., Katulski R.J., Sadowski J., Siwicki W., Stefański J.: Ground-based, Hyperbolic Radiolocation System with Spread Spectrum Signal - AEGIR. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 5, No. 2, pp. 233-238, 2011. - doi:10.1201/b11343-13
Duckworth G.L. & Baranoski, E.J. 2007. Navigation in GNSS-denied environments: Signals of opportunity and beacons. Military Capabilities Enabled by Advances in Navigation Sensors. Meeting Proceedings RTO-MP-SET-104, Neuilly-sur-Seine, France, 2007: 3-1–3-14.
Panigrahi, N., Doddamani, S.R., Singh, M. & Kandulna, B.N. 2015. A method to compute location in GNSS denied area. 2015 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 10–11 July 2015: 1–5. - doi:10.1109/CONECCT.2015.7383907
Zahran, S., Moussa, A. & El-Sheimy, N. 2018. Enhanced UAV navigation in GNSS denied environment using repeated dynamics pattern recognition. 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018: 1135–1142. - doi:10.1109/PLANS.2018.8373497
Chevli, K.R., Kim, P.Y., Kagel, A.A., Moy, D.W., Pattay, R.S., Nichols, R.A. & Goldfinger, A.D. 2006. Blue force tracking network modeling and simulation. 2006 IEEE Military Communications Conference (MILCOM), Washington, DC, USA, 23–25 October 2006: 1–7. - doi:10.1109/MILCOM.2006.302050
Shridharan, S., Kumar, R. & Pundir, S.K. 2013. Positioning of military combat units through weight-based terrain analysis using NASA World Wind. 2013 IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), Singapore, 16–19 April 2013: 9–15. - doi:10.1109/CISDA.2013.6595421
Kelner, J.M. & Ziółkowski, C. 2012. Autonomous system of monitoring location and identification of individual soldiers in subunits of own forces (in Polish). 2012 IX Conference on Reconnaissance and Electronic Warfare Systems (CREWS), Kazimierz Dolny, Poland, 6–8 November 2012: 1–11.
Jacobus, C.J., Cohen, C., Haanpaa, D. & Siebert, G. A personal blue force tracking system.
Kelner, J.M., Ziółkowski, C. & Kachel, L. 2008. The empirical verification of the location method based on the doppler effect. 2008 17th International Conference on Microwaves, Radar and Wireless Communications (MIKON), Wrocław, Poland, 19–21 May 2008. vol. 3: 755–758.
Kelner, J.M. 2010. Analysis of the Doppler location method of the radio waves emission sources, Ph.D. Thesis (in Polish). Warsaw, Poland: Military University of Technology.
Gajewski, P., Ziółkowski, C. & Kelner, J.M. 2012. Using SDF method for simultaneous location of multiple radio transmitters. 2012 19th International Conference on Microwave Radar and Wireless Communications (MIKON), Warsaw, Poland, 21–23 May 2012. vol. 2: 634–637. - doi:10.1109/MIKON.2012.6233581
COSPAS-SARSAT. 2019. International COSPAS-SARSAT Programme. Available: https://cospas-sarsat.int/en/.
Levanon, N. & Ben-Zaken, M. 1985. Random error in ARGOS and SARSAT satellite positioning systems. IEEE Transactions on Aerospace and Electronic Systems AES-21(6): 783–790. - doi:10.1109/TAES.1985.310663
Arslan, H. 2007. Cognitive radio, software defined radio, and adaptive wireless systems. Dordrecht, Netherlands: Springer. - doi:10.1007/978-1-4020-5542-3
Wyglinski, A.M. & Pu, D. 2013. Digital communication systems engineering with software-defined radio. Boston, MA, USA; London, UK: Artech House.
Kelner, J.M., Ziółkowski, C. & Marszałek, P. 2016. Influence of the frequency stability on the emitter position in SDF method. 2016 17th International Conference on Military Communications and Information Systems (ICMCIS), Brussels, Belgium, 23-24 May 2016: 1–6. - doi:10.1109/ICMCIS.2016.7496554
Kelner, J.M. & Ziółkowski, C. 2015. The use of SDF technology to BPSK and QPSK emission sources’ location. Przegląd Elektrotechniczny 91(3): 61–65.
Rafa, J. & Ziółkowski, C. 2008. Influence of transmitter motion on received signal parameters – Analysis of the Doppler effect. Wave Motion 45(3): 178–190. - doi:10.1016/j.wavemoti.2007.05.003
Kelner, J.M. 2011. Positioning an aircraft using the TDSDF method. Polish Journal of Environmental Studies 20(5A): 80–84.
Citation note:
Kelner J.M., Ziółkowski C.: Mobile Radio Beacons in Coastal Reserved Navigation System for Ships. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 14, No. 3, doi:10.12716/1001.14.03.11, pp. 603-610, 2020

Other publications of authors:


File downloaded 97 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony