Journal is indexed in following databases:



2022 Journal Impact Factor - 0.6
2022 CiteScore - 1.7



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
Optimization of Daily Operations in the Marine Industry Using Ant Colony Optimization (ACO)-An Artificial Intelligence (AI) Approach
1 University of Tasmania, Launceston, Australia
2 Memorial University of Newfoundland, Newfoundland and Labrador, St. John’s, Canada
ABSTRACT: The maritime industry plays a crucial role in the global economy, with roughly 90% of world trade being conducted through the use of merchant ships and more than a million seafarers. Despite recent efforts to improve reliability and ship structure, the heavy dependence on human performance has led to a high number of casualties in the industry. Decision errors are the primary cause of maritime accidents, with factors such as lack of situational awareness and attention deficit contributing to these errors. To address this issue, the study proposes an Ant Colony Optimization (ACO) based algorithm to design and validate a verified set of instructions for performing each daily operational task in a standardised manner. This AI-based approach can optimise the path for complex tasks, provide clear and sequential instructions, improve efficiency, and reduce the likelihood of human error by minimising personal preference and false assumptions. The proposed solution can be transformed into a globally accessible, standardised instructions manual, which can significantly contribute to minimising human error during daily operational tasks on ships.
REFERENCES
Allianz Global Corporate and Speciality. Safety & Shipping Review 2019 | AGCS https://www.agcs.allianz.com/news-and-insights/news/safety-shipping-review-2019.html (accessed Jan 19, 2023).
de Maya, B. N.; Farag, Y.; Bantan, H.; Kurt, R.; Turan, O.; Uflaz, E.; Basappa, R. D.; Sotiralis, P.; Ventikos, N. P. Human Factors’ Contribution into Maritime Accidents by Applying the SHIELD HF Taxonomy. SNAME 14th International Marine Design Conference, IMDC 2022, 2022. - doi:10.5957/IMDC-2022-336
Sánchez-Beaskoetxea, J.; Basterretxea-Iribar, I.; Sotés, I.; Machado, M. de las M. M. Human Error in Marine Accidents: Is the Crew Normally to Blame? Maritime Transport Research, 2021, 2, 100016. - doi:10.1016/j.martra.2021.100016
Chauvin, C.; Lardjane, S.; Morel, G.; Clostermann, J. P.; Langard, B. Human and Organisational Factors in Maritime Accidents: Analysis of Collisions at Sea Using the HFACS. Accid Anal Prev, 2013, 59, 26–37. - doi:10.1016/j.aap.2013.05.006
Hulme, A.; Stanton, N. A.; Walker, G. H.; Waterson, P.; Salmon, P. M. Accident Analysis in Practice: A Review of Human Factors Analysis and Classification System (HFACS) Applications in the Peer Reviewed Academic Literature. - doi:10.1177/1071181319631086
Li, P.; Cai, Q.; Lin, W.; Chen, B.; Zhang, B. Offshore Oil Spill Response Practices and Emerging Challenges. Mar Pollut Bull, 2016, 110 (1), 6–27. - doi:10.1016/j.marpolbul.2016.06.020
Luo, M.; Shin, S. Half-Century Research Developments in Maritime Accidents: Future Directions. Accid Anal Prev, 2019, 123, 448–460. - doi:10.1016/j.aap.2016.04.010
Schröder-Hinrichs, J.-U.; Praetorius, G.; Graziano, A.; Kataria, A.; Baldauf, M. Introducing the Concept of Resilience into Maritime Safety. 2016, 176–182.
Pazouki, K.; Forbes, N.; Norman, R. A.; Woodward, M. D. Investigation on the Impact of Human-Automation Interaction in Maritime Operations. Ocean Engineering, 2018, 153, 297–304. - doi:10.1016/j.oceaneng.2018.01.103
Dorigo, M.; Gambardella, L. M. Ant Colonies for the Travelling Salesman Problem. Biosystems, 1997, 43 (2), 73–81. - doi:10.1016/S0303-2647(97)01708-5
Wang, J.; Dong, L. Ship Energy-Saving Route Planning Based on Dynamic Fuel Consumption Model. - doi:10.1117/12.2645621
Xiang, Y.; Yang, X. An ECMS for Multi-Objective Energy Management Strategy of Parallel Diesel Electric Hybrid Ship Based on Ant Colony Optimization Algorithm. Energies 2021, Vol. 14, Page 810, 2021, 14 (4), 810. - doi:10.3390/en14040810
Chen, D. Z.; Wei, C.; Jia, G. L.; Hu, Z. H. Shortest-Path Optimization of Ship Diesel Engine Disassembly and Assembly Based on AND/OR Network. Complexity, 2020, 2020. - doi:10.1155/2020/2919615
Ma, W.; Lu, T.; Ma, D.; Wang, D.; Qu, F. Ship Route and Speed Multi-Objective Optimization Considering Weather Conditions and Emission Control Area Regulations. - doi:10.1080/03088839.2020.1825853
Lazarowska, A. Ship’s Trajectory Planning for Collision Avoidance at Sea Based on Ant Colony Optimization. The Journal of Navigation, 2015, 68 (2), 291–307. - doi:10.1017/S0373463314000708
Shen, X. Research on Optimization Model of Marine Industry Strategic Adjustment under Complex Maritime Conditions Based on Ant Colony Algorithm. Polish Maritime Research, 2018, S 2, 164–169. - doi:10.2478/pomr-2018-0088
Yang, J.; Zhuang, Y. An Improved Ant Colony Optimization Algorithm for Solving a Complex Combinatorial Optimization Problem. Appl Soft Comput, 2010, 10 (2), 653–660. - doi:10.1016/j.asoc.2009.08.040
Dong, L.; Xiao, Q.; Jia, Y.; Fang, T. Review of Research on Intelligent Diagnosis of Oil Transfer Pump Malfunction. Petroleum, 2022. - doi:10.1016/j.petlm.2022.01.002
Emad, G.; Roth, W. M. Contradictions in the Practices of Training for and Assessment of Competency: A Case Study from the Maritime Domain. Education and Training, 2008, 50 (3), 260–272. - doi:10.1108/00400910810874026
Irving, P.; Holloway, M.; Hook, S.; Ross, A.; Stalvies, C. Preparing for Oil Spill Monitoring. Oil Spill Monitoring Handbook, 2016.
Ożoga, B.; Montewka, J. Towards a Decision Support System for Maritime Navigation on Heavily Trafficked Basins. Ocean Engineering, 2018, 159, 88–97. - doi:10.1016/j.oceaneng.2018.03.073
Mansouri, S. A.; Lee, H.; Aluko, O. Multi-Objective Decision Support to Enhance Environmental Sustainability in Maritime Shipping: A Review and Future Directions. Transp Res E Logist Transp Rev, 2015, 78, 3–18. - doi:10.1016/j.tre.2015.01.012
Malyszko, M. Fuzzy Logic in Selection of Maritime Search and Rescue Units. Applied Sciences 2022, Vol. 12, Page 21, 2021, 12 (1), 21. - doi:10.3390/app12010021
Poornikoo, M.; Øvergård, K. I. Levels of Automation in Maritime Autonomous Surface Ships (MASS): A Fuzzy Logic Approach. Maritime Economics and Logistics, 2022, 24 (2), 278–301. - doi:10.1057/s41278-022-00215-z
Chen, C. H.; Khoo, L. P.; Chong, Y. T.; Yin, X. F. Knowledge Discovery Using Genetic Algorithm for Maritime Situational Awareness. Expert Syst Appl, 2014, 41 (6), 2742–2753. - doi:10.1016/j.eswa.2013.09.042
Li, L.; Gu, Q.; Liu, L. Research on Path Planning Algorithm for Multi-Uav Maritime Targets Search Based on Genetic Algorithm. Proceedings of 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence, ICIBA 2020, 2020, 840–843. - doi:10.1109/ICIBA50161.2020.9277470
Huang, K.; Hsieh, C.-Y.; Chou, Y.-C. An Ant-Based Algorithm for the Cross Docking Scheduling Problem for Distribution Centers. International Forum on Shipping, Ports and Airports (IFSPA) 2013: Trade, Supply Chain Activities and Transport: Contemporary Logistics and Maritime Issues, 2013, 522–535.
Lisowski, J. Optimization Methods in Maritime Transport and Logistics. Polish Maritime Research, 2018, 25 (4), 30–38. - doi:10.2478/pomr-2018-0129
Azadeh, M. A.; Shoja, B. M.; Kazemian, P.; Hojati, Z. T. A Hybrid Ant Colony-Computer Simulation Approach for Optimum Planning and Control of Maritime Traffic. International Journal of Industrial and Systems Engineering, 2013, 15 (1), 69–89. - doi:10.1504/IJISE.2013.055512
Fu, B.; Song, X.; Guo, Z.; Zhang, P. An Optimization Model for Container Transportation Network with ACO Approach. 2007 IEEE Congress on Evolutionary Computation, CEC 2007, 2007, 4768–4775. - doi:10.1109/CEC.2007.4425098
Lazarowska, A. Safe Ship Control Method with the Use of Ant Colony Optimization. Solid State Phenomena, 2014, 210, 234–244. - doi:10.4028/www.scientific.net/SSP.210.234
Citation note:
Sardar A., Anantharaman M., Garaniya V., Khan F.: Optimization of Daily Operations in the Marine Industry Using Ant Colony Optimization (ACO)-An Artificial Intelligence (AI) Approach. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 17, No. 2, doi:10.12716/1001.17.02.04, pp. 289-295, 2023
Authors in other databases:
Abdullah Sardar:

Other publications of authors:

M. Anantharaman, R. Islam, F. Khan, V. Garaniya, B. Lewarn

File downloaded 145 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony