Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2024 Journal Impact Factor - 0.6
2024 CiteScore - 1.9
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Enabling the Future of Autonomous Shipping: Regulatory Challenges, Infrastructure Modernization and Pathways to Integration
1 Klaipeda University, Klaipeda, Lithuania
2 University of Genova, Genova, Italy
2 University of Genova, Genova, Italy
ABSTRACT: The widespread adoption of Maritime Autonomous Surface Ships (MASS) has the potential to transform global shipping by enhancing efficiency, safety and environmental sustainability. However, achieving this transformation requires strong support from governmental and maritime authorities to ensure the smooth and secure integration of these technologies into existing systems. This paper explores the crucial role of regulatory bodies in enabling the operational acceptance of MASS, focusing on regulatory frameworks, the modernization of port infrastructure and the need for standardization. It also examines key challenges such as cybersecurity risks, interoperability concerns and legal liabilities associated with MASS deployment. Finally, the paper offers recommendations for future actions to facilitate the effective implementation of autonomous shipping technologies
KEYWORDS: Maritime Autonomous Surface Ships (MASS), Smart Ports, MASS Code, Regulatory Framework, Port Infrastructure Modernization, National Administration Role, Cybersecurity Challenges, Stakeholder Collaboration
REFERENCES
Ø. J. Rødseth, L. A. L. Wennersberg, and H. Nordahl, “Improving safety of interactions between conventional and autonomous ships,” Ocean Engineering, vol. 284, Sep. 2023, doi: 10.1016/j.oceaneng.2023.115206. - doi:10.1016/j.oceaneng.2023.115206
M. Waltz and O. Okhrin, “Spatial–temporal recurrent reinforcement learning for autonomous ships,” Neural Networks, vol. 165, pp. 634–653, Aug. 2023, doi: 10.1016/j.neunet.2023.06.015. - doi:10.1016/j.neunet.2023.06.015
I. Kurt and M. Aymelek, “Operational adaptation of ports with maritime autonomous surface ships,” Transp Policy (Oxf), vol. 145, pp. 1–10, Jan. 2024, doi: 10.1016/j.tranpol.2023.09.023. - doi:10.1016/j.tranpol.2023.09.023
H. Ali, G. Xiong, Q. Tianci, R. Kumar, X. Dong, and Z. Shen, “Autonomous ship navigation with an enhanced safety collision avoidance technique,” ISA Trans, Oct. 2023, doi: 10.1016/j.isatra.2023.10.019. - doi:10.1016/j.isatra.2023.10.019
Ç. Karatuğ, Y. Arslanoğlu, and C. Guedes Soares, “Determination of a maintenance strategy for machinery systems of autonomous ships,” Ocean Engineering, vol. 266, Dec. 2022, doi: 10.1016/j.oceaneng.2022.113013. - doi:10.1016/j.oceaneng.2022.113013
P. Corsi, S. Jakovlev, and M. Figari, “Ship maneuverability modeling for Autonomous Navigation,” in 2024 IEEE Workshop on Complexity in Engineering, COMPENG 2024, Institute of Electrical and Electronics Engineers Inc., 2024. doi: 10.1109/COMPENG60905.2024.10741395. - doi:10.1109/COMPENG60905.2024.10741395
K. Wang, Q. Hu, M. Zhou, Z. Zun, and X. Qian, “Multi- aspect applications and development challenges of digital twin-driven management in global smart ports,” Case Stud Transp Policy, vol. 9, no. 3, pp. 1298–1312, Sep. 2021, doi: 10.1016/j.cstp.2021.06.014. - doi:10.1016/j.cstp.2021.06.014
G. D’Amico, K. Szopik-Depczyńska, I. Dembińska, and G. Ioppolo, “Smart and sustainable logistics of Port cities: A framework for comprehending enabling factors, domains and goals,” Sustain Cities Soc, vol. 69, Jun. 2021, doi: 10.1016/j.scs.2021.102801. - doi:10.1016/j.scs.2021.102801
P. Lee, G. Theotokatos, E. Boulougouris, and V. Bolbot, “Risk-informed collision avoidance system design for maritime autonomous surface ships,” Ocean Engineering, vol. 279, Jul. 2023, doi: 10.1016/j.oceaneng.2023.113750. - doi:10.1016/j.oceaneng.2023.113750
E. Veitch and O. Andreas Alsos, “A systematic review of human-AI interaction in autonomous ship systems,” Saf Sci, vol. 152, Aug. 2022, doi: 10.1016/j.ssci.2022.105778. - doi:10.1016/j.ssci.2022.105778
X. Li, P. Oh, Y. Zhou, and K. F. Yuen, “Operational risk identification of maritime surface autonomous ship: A network analysis approach,” Transp Policy (Oxf), vol. 130, pp. 1–14, Jan. 2023, doi: 10.1016/j.tranpol.2022.10.012. - doi:10.1016/j.tranpol.2022.10.012
S. Jakovlev, A. Andziulis, A. Daranda, M. Voznak, and T. Eglynas, “Research on ship autonomous steering control for short-sea shipping problems,” Transport, vol. 32, no. 2, 2017, doi: 10.3846/16484142.2017.1286521. - doi:10.3846/16484142.2017.1286521
“IMO, MSC108. Roadmap revised for the development of a code to regulate autonomous ships (MASS)”, London.,” London, 2024.
L. Wang, Q. Wu, J. Liu, S. Li, and R. R. Negenborn, “State- of-the-art research on motion control of maritime autonomous surface ships,” J Mar Sci Eng, vol. 7, no. 12, Dec. 2019, doi: 10.3390/JMSE7120438. - doi:10.3390/jmse7120438
RINA, “Guide for Maritime Autonomous Surface Ships (MASS),” 2021.
“CCS China Classification Society, Rules for Intelligent Ships, Beijing.,” 2024.
“IMO, MSC 107. Development of a goal-based instrument for MASS, Report of the MSC-LEG-FAL Joint Working Group,” 2024.
L. Filina-Dawidowicz, V. Paulauskas, D. Paulauskas, and V. Senčila, “Assessment of Vessel Mooring Conditions Using Satellite Navigation System Real-Time Kinematic Application,” J Mar Sci Eng, vol. 12, no. 12, Dec. 2024, doi: 10.3390/jmse12122144. - doi:10.3390/jmse12122144
Z. Zhou and Y. Zhang, “A system for the validation of collision avoidance algorithm performance of autonomous ships,” Ocean Engineering, vol. 280, Jul. 2023, doi: 10.1016/j.oceaneng.2023.114600. - doi:10.1016/j.oceaneng.2023.114600
C. Wu, W. Yu, G. Li, and W. Liao, “Deep reinforcement learning with dynamic window approach based collision avoidance path planning for maritime autonomous surface ships,” Ocean Engineering, vol. 284, Sep. 2023, doi: 10.1016/j.oceaneng.2023.115208. - doi:10.1016/j.oceaneng.2023.115208
K. Zhang et al., “A real-time multi-ship collision avoidance decision-making system for autonomous ships considering ship motion uncertainty,” Ocean Engineering, vol. 278, Jun. 2023, doi: 10.1016/j.oceaneng.2023.114205. - doi:10.1016/j.oceaneng.2023.114205
P. Beaumont, “Cybersecurity Risks and Automated Maritime Container Terminals in the Age of 4IR,” 2018, pp. 497–516. doi: 10.4018/978-1-5225-4763-1.ch017. - doi:10.4018/978-1-5225-4763-1.ch017
A. Daranda, A. Andziulis, and S. Jakovlev, “Fake vessels identification in the AIS,” in Transport Means - Proceedings of the International Conference, 2015.
V. Kampourakis, V. Gkioulos, and S. Katsikas, “A systematic literature review on wireless security testbeds in the cyber-physical realm,” Oct. 01, 2023, Elsevier Ltd. doi: 10.1016/j.cose.2023.103383. - doi:10.1016/j.cose.2023.103383
Citation note:
Corsi P., Jakovlev S., Figari M., Pocevicius E.: Enabling the Future of Autonomous Shipping: Regulatory Challenges, Infrastructure Modernization and Pathways to Integration. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 19, No. 3, doi:10.12716/1001.19.03.12, pp. 795-799, 2025
Authors in other databases:
Pietro Corsi:
orcid.org/0009-0005-0630-021X
orcid.org/0009-0005-0630-021X
Edvinas Pocevicius:
37028581100
FLwx2iUAAAAJ