Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2024 Journal Impact Factor - 0.6
2024 CiteScore - 1.9
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Use of Open Source for Bottom Model Interpolation – Single Beam Use Case in SONARMUS Software
1 Maritime University of Szczecin, Szczecin, Poland
2 InnoPM Ltd, Szczecin, Poland
2 InnoPM Ltd, Szczecin, Poland
ABSTRACT: Single Beam Echosounders (SBES) continue to serve as a practical solution for hydrographic surveys. Despite their limitations in spatial coverage, SBES can provide reliable depth measurements when supported by solid post-processing techniques. One of the critical steps in generating usable bathymetric products from SBES data is interpolation – a method used to estimate the continuous bottom model from discrete depth soundings. This paper presents research on the use of open-source tools for bottom model interpolation in SBES datasets within customly developed SONARMUS software environment. Several commonly used interpolation techniques in geospatial and data science applications are evaluated, including Inverse Distance Weighting (IDW), Kriging, Natural Neighbor, and Radial Basis Functions (RBF). Emphasis is placed on the reproducibility and flexibility offered by Python-based open-source libraries such as SciPy, PyKrige, and GDAL. Real SBES datasets from various surveys are used for testing and validation. The study evaluates the accuracy of the interpolation by comparing the predicted depths with control points and assessing the root mean square error (RMSE), mean absolute error (MAE), and distribution analysis. The performance and suitability of each method is examined in terms of computational efficiency, sensitivity to data density and ease of integration into existing workflows. The results demonstrate that open-source tools, when appropriately configured, can effectively support high-quality bottom model generation from SBES data. The integration of these tools into SONARMUS enhances the software’s capability to deliver reliable bathymetric outputs, particularly in low-cost and rapid survey scenarios.
KEYWORDS:
REFERENCES
J. Chen and W. Zhong, "TFInterpy: A high-performance spatial interpolation Python package," SoftwareX, vol. 18, p. 101076, 2022.
R. C. Hales, E. J. Nelson, G. P. Williams, N. Jones, D. P. Ames, and J. E. Jones, “The Grids Python Tool for Querying Spatiotemporal Multidimensional Water Data,” Water, vol. 13, no. 15, p. 2066, Jul. 2021, doi: 10.3390/w13152066.
T. McEwen, D. Pothina, and S. Negusse, “Improving efficiency and repeatability of lake volume estimates using Python,” Proc. 10th Python in Science Conf. (SciPy), 2011, pp. 114–118.
C.-Y. Wu, J. Mossa, L. Mao, and M. Almulla, “Comparison of different spatial interpolation methods for historical hydrographic data of the lowermost Mississippi River,” Annals of GIS, vol. 25, no. 2, pp. 133–151, 2019, doi: 10.1080/19475683.2019.1588781.
N. O. Aykut, B. Akpınar, and Ö. Aydın, “Hydrographic data modeling methods for determining precise seafloor topography,” Comput. Geosci., vol. 17, pp. 661–669, 2013, doi: 10.1007/s10596-013-9347-1.
E. Adediran, C. Kastrisios, K. Lowell, G. Rice, and Q. Zhang, “Toward Quantifying Interpolation Uncertainty in Set-Line Spacing Hydrographic Surveys,” ISPRS Int. J. Geo-Inf., vol. 14, no. 2, p. 90, Feb. 2025, doi: 10.3390/ijgi14020090.
G. Fleit, “Windowed anisotropic local inverse distance-weighted (WALID) interpolation method for riverbed mapping,” Acta Geophysica, vol. 73, pp. 2819–2833, 2025, doi: 10.1007/s11600-024-01510-4.
G. Masetti et al., “Denmark’s Depth Model: Compilation of Bathymetric Data within the Danish Waters,” Geomatics, vol. 2, no. 4, pp. 486–498, 2022, doi: 10.3390/geomatics2040026.
M. Specht et al., “Analysis of Methods for Determining Shallow Waterbody Depths Based on Images Taken by Unmanned Aerial Vehicles,” Sensors, vol. 22, no. 5, Art. no. 1844, Feb. 2022, doi: 10.3390/s22051844.
A. Jaszcz, M. Włodarczyk-Sielicka, A. Stateczny, D. Połap, and I. Garczyńska, "Automated shoreline segmentation in satellite imagery using USV measurements," Remote Sensing, vol. 16, no. 24, p. 4457, 2024, doi: 10.3390/rs16234457.
K. Prokop, D. Połap, M. Włodarczyk-Sielicka, K. Połap, A. Jaszcz, and A. Stateczny, "Automated shoreline extraction process for unmanned vehicles via U-net with heuristic algorithm," Alexandria Engineering Journal, vol. 102, pp. 108–118, 2024, doi: 10.1016/j.aej.2024.05.104. K. Prokop, D. Połap, M. Włodarczyk-Sielicka, K. Połap, A. Jaszcz, and A. Stateczny, "Automated shoreline extraction process for unmanned vehicles via U-net with heuristic algorithm," Alexandria Engineering Journal, vol. 102, pp. 108–118, 2024, doi: 10.1016/j.aej.2024.05.104.
N. Thomas, B. Lee, O. Coutts, P. Bunting, D. Lagomasino, and L. Fatoyinbo, “A purely spaceborne open source approach for regional bathymetry mapping,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022, Art. no. 4708109, doi: 10.1109/TGRS.2022.3192825.
I. Garczyńska-Cyprysiak, W. Kazimierski, and M. Włodarczyk-Sielicka, "Neural approach to coordinate transformation for LiDAR–camera data fusion in coastal observation," Sensors, vol. 24, no. 20, p. 6766, 2024, doi: 10.3390/s24206766.
J. Li and A. D. Heap, “Spatial interpolation methods applied in the environmental sciences: A review,” Environmental Modelling & Software, vol. 53, pp. 173–189, 2014, doi: 10.1016/j.envsoft.2013.12.008.
R. Gradka and A. Kwinta, “A short review of interpolation methods used for terrain modeling,” Geomatics, Landmanagement and Landscape, vol. 4, pp. 29–47, 2018, doi: 10.15576/GLL/2018.4.29.
W. Lu and D. W. S. Wong, “An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique,” Computers & Geosciences, vol. 34, no. 9, pp. 1044–1055, Sept. 2008. doi: 10.1016/j.cageo.2007.07.010
S. Salekin, J. H. Burgess, J. Morgenroth, E. G. Mason, and D. F. Meason, “A Comparative Study of Three Non-Geostatistical Methods for Optimising Digital Elevation Model Interpolation,” ISPRS International Journal of Geo-Information, vol. 7, no. 8, p. 300, Jul. 2018. doi: 10.3390/ijgi7080300
N. A. C. Cressie, “The Origins of Kriging,” Mathematical Geology, vol. 22, no. 3, pp. 239–252, Apr. 1990, doi: 10.1007/BF00889887.
A. G. Journel and C. J. Huijbregts, Mining Geostatistics, London: Academic Press, 1978.
P. Biernacik, W. Kazimierski, and M. Włodarczyk-Sielicka, "Comparative analysis of selected geostatistical methods for bottom surface modeling," Sensors, vol. 23, no. 8, p. 3941, 2023, doi: 10.3390/s23083941.
M. Kholghi and S. M. Hosseini, “Comparison of Groundwater Level Estimation Using Neuro-fuzzy and Ordinary Kriging,” Environmental Modeling & Assessment, vol. 14, no. 6, pp. 729–737, Dec. 2009, doi: 10.1007/s10666-008-9174-2.
C. Du, “An interpolation method for grid-based terrain modeling,” The Computer Journal, vol. 39, no. 10, pp. 837–843, 1996, doi: 10.1093/comjnl/39.10.837.
R. Freedman, “New approach for solving inverse problems encountered in well-logging and geophysical applications,” Petrophysics, vol. 47, no. 2, pp. 93–111, Apr. 2006.
Y.-L. Zou, F.-L. Hu, C.-C. Zhou, C.-L. Li, and K.-J. Dunn, “Analysis of radial basis function interpolation approach,” Appl. Geophys., vol. 10, no. 4, pp. 397–410, Dec. 2013, doi: 10.1007/s11770-013-0407-z.
W. Keller and A. Borkowski, “Thin plate spline interpolation,” J. Geod., vol. 93, no. 8, pp. 1251–1269, Aug. 2019, doi: 10.1007/s00190-019-01240-2.
D. F. Specht, "A general regression neural network," IEEE Transactions on Neural Networks, vol. 2, no. 6, pp. 568–576, 1991.
H. K. Ghritlahre and R. K. Prasad, "Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique," Journal of Environmental Management, vol. 223, pp. 566–575, 2018, doi: 10.1016/j.jenvman.2018.06.033.
S. Liu, Y. Gao, W. Zheng, and X. Li, “Performance of two neural network models in bathymetry,” Remote Sensing Letters, vol. 6, no. 4, pp. 321–330, 2015, doi: 10.1080/2150704X.2015.1034885.
Z. Duan, S. Chu, L. Cheng, C. Ji, M. Li, and W. Shen, “Satellite-derived bathymetry using Landsat-8 and Sentinel-2A images: assessment of atmospheric correction algorithms and depth derivation models in shallow waters,” Optics Express, vol. 30, no. 3, pp. 3238–3261, 2022, doi: 10.1364/OE.444557.
A. Misra, Z. Vojinovic, B. Ramakrishnan, A. Luijendijk, and R. Ranasinghe, “Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery,” International Journal of Remote Sensing, vol. 39, no. 14, pp. 4739–4765, 2018, doi: 10.1080/01431161.2017.1421796.
J. J. Roberts, B. D. Best, D. C. Dunn, E. A. Treml, and P. N. Halpin, “Marine Geospatial Ecology Tools: An integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++,” Environmental Modelling & Software, vol. 25, no. 10, pp. 1197–1207, 2010, doi: 10.1016/j.envsoft.2010.03.029.
A. A. Korosov, M. W. Hansen, K.-F. Dagestad, A. Yamakawa, A. Vines, and M. Riechert, “Nansat: a scientist-orientated Python package for geospatial data processing,” Journal of Open Research Software, vol. 4, 2016, Art. no. e39, doi: 10.5334/jors.120.
S. J. Rey, L. Anselin, X. Li, R. Pahle, J. Laura, W. Li, and J. Koschinsky, “Open geospatial analytics with PySAL,” ISPRS Int. J. Geo-Inf., vol. 4, no. 2, pp. 815–836, 2015, doi: 10.3390/ijgi4020815.
B. Murphy, S. Müller, and R. Yurchak, GeoStat-framework/PyKrige v1.5.1 (Version v1.5.1) [Computer software], Zenodo, Aug. 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3991907
P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020. [Online]. Available: https://www.nature.com/articles/s41592-019-0686-2
F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011. [Online]. Available: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
H. Junninen, H. Niska, K. Tuppurainen, J. Ruuskanen, and M. Kolehmainen, "Methods for imputation of missing values in air quality data sets," Atmospheric Environment, vol. 38, no. 18, pp. 2895–2907, Jun. 2004, doi: 10.1016/j.atmosenv.2004.02.026.
J. Lubczonek, W. Kazimierski, G. Zaniewicz, and M. Lacka, "Methodology for combining data acquired by unmanned surface and aerial vehicles to create digital bathymetric models in shallow and ultra-shallow waters," Remote Sensing, vol. 14, no. 1, p. 105, 2022, doi: 10.3390/rs14010105.
Citation note:
Biernacik P., Kazimierski W., Włodarczyk-Sielicka M.: Use of Open Source for Bottom Model Interpolation – Single Beam Use Case in SONARMUS Software. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 19, No. 4, doi:10.12716/1001.19.04.34, pp. 1341-1350, 2025
Authors in other databases:
Patryk Biernacik:

24829115600
X7m2hjsAAAAJ