Journal is indexed in following databases:



2022 Journal Impact Factor - 0.6
2022 CiteScore - 1.7



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
Trends and Challenges in Unmanned Surface Vehicles (USV): From Survey to Shipping
Times cited (SCOPUS): 17
ABSTRACT: Autonomy and unmanned systems have evolved significantly in recent decades, becoming a key routine component for various sectors and domains as an intrinsic sign of their improvement, the ocean not being an exception. This paper shows the transition from the research concept to the commercial product and related services for Unmanned Surface Vehicles (USV). Note that it has not always been easy in most cases due to the limitations of the technology, business, and policy framework. An overview of current trends in USV technology looking for a baseline to understand the sector where some experiences of the authors are shown in this work. The analysis presented shows a multidisciplinary approach to the field. USV's capabilities and applications today include a wide range of operations and services aimed at meeting the specific needs of the maritime sector. This important consideration for USV has yet to be fully addressed, but progress is being made.
REFERENCES
Autonomous and Remotely Operated Ships: http://rules.dnvgl.com.
Barrera, C., Morales, T., Moran, R., Caudet, E., Marrero, R., Cianca, A., Alcaraz, D., Campuzano, F., Fernandes, C., de Sousa, J.T.B., Rueda, M.J., Llinas, O.: Expanding operational ocean-observing capabilities with gliders across the Macaronesia region. Presented at the AGU - Ocean Sciences Meeting 2020 , San Diego, CA, USA February 16 (2020).
Benjamin, M.R., Curcio, J.A.: COLREGS-based navigation of autonomous marine vehicles. In: 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578). pp. 32–39 (2004). - doi:10.1109/AUV.2004.1431190
Bertram, V.: Unmanned surface vehicles-a survey. Skibsteknisk Selskab, Copenhagen, Denmark. 1, 1–14 (2008).
Bibuli, M., Caccia, M., Lapierre, L., Bruzzone, G.: Guidance of Unmanned Surface Vehicles: Experiments in Vehicle Following. IEEE Robotics & Automation Magazine. 19, 3, 92–102 (2012). - doi:10.1109/MRA.2011.2181784
Bratić, K., Pavić, I., Vukša, S., Stazić, L.: Review of Autonomous and Remotely Controlled Ships in Maritime Sector. Trans. Marit. Sci. 8, 2, 253–265 (2019). - doi:10.7225/toms.v08.n02.011
Breivik, M.: Topics in guided motion control of marine vehicles. Norwegian University of Science and Technology (2010).
Bremer, R.H., Cleophas, P.L., Fitski, H.J., Keus, D.: Unmanned surface and underwater vehicles. DTIC Document, TNO Defence Security and Safety (Netherlands) (2007).
Burmeister, H.-C., Bruhn, W., Rødseth, Ø.J., Porathe, T.: Autonomous Unmanned Merchant Vessel and its Contribution towards the e-Navigation Implementation: The MUNIN Perspective. International Journal of e-Navigation and Maritime Economy. 1, 1–13 (2014). - doi:10.1016/j.enavi.2014.12.002
Caccia, M.: Autonomous Surface Craft: prototypes and basic research issues. In: 2006 14th Mediterranean Conference on Control and Automation. pp. 1–6 (2006). - doi:10.1109/MED.2006.328786
Caccia, M., Bibuli, M., Bono, R., Bruzzone, G.: Basic navigation, guidance and control of an Unmanned Surface Vehicle. Autonomous Robots. 25, 4, 349–365 (2008). - doi:10.1007/s10514-008-9100-0
Campbell, S., Naeem, W., Irwin, G.W.: A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annual Reviews in Control. 36, 2, 267–283 (2012). - doi:10.1016/j.arcontrol.2012.09.008
Casalino, G., Turetta, A., Simetti, E.: A three-layered architecture for real time path planning and obstacle avoidance for surveillance USVs operating in harbour fields. In: OCEANS 2009-EUROPE. pp. 1–8 (2009). - doi:10.1109/OCEANSE.2009.5278104
Chen, S.-L., Cheng, H.B.: Modeling and simulation based on fuzzy neural network for unmanned surface vehicle. Ship Science & Technology. 32, 11, 134–136 (2010).
Cruz, N.A., Alves, J.C.: Autonomous sailboats: An emerging technology for ocean sampling and surveillance. In: OCEANS 2008. pp. 1–6 (2008). - doi:10.1109/OCEANS.2008.5152113
Dai, S., Wang, C., Luo, F.: Identification and Learning Control of Ocean Surface Ship Using Neural Networks. IEEE Transactions on Industrial Informatics. 8, 4, 801–810 (2012). - doi:10.1109/TII.2012.2205584
Daniel, T., Manley, J., Trenaman, N.: The Wave Glider: enabling a new approach to persistent ocean observation and research. Ocean Dynamics. 61, 10, 1509–1520 (2011). - doi:10.1007/s10236-011-0408-5
DNV GL. – ReVolt: Next Generation Short Sea Shipping, https://www.dnvgl.com/news/.
Do, K.D.: Practical control of underactuated ships. Ocean Engineering. 37, 13, 1111–1119 (2010). - doi:10.1016/j.oceaneng.2010.04.007
Du, J., Yang, Y., Wang, D., Guo, C.: A robust adaptive neural networks controller for maritime dynamic positioning system. Neurocomputing. 110, 128–136 (2013). - doi:10.1016/j.neucom.2012.11.027
Fer, I., Peddie, D.: Near-surface oceanographic measurements using the Sail Buoy: test deployment off Grand Canaria. Christian Michelsen Research AS, Bergen (2012).
Ferreira, H., Almeida, C., Silva, H., Almeida, J.M., Silva, E., Martins, A.: ROAZ and ROAZ II Autonomous Surface Vehicle Design and Implementation. Presented at the International Lifesaving Congress , La Coruna, Spain (2007).
Ferreira, H., Martins, R., Marques, E., Pinto, J., Martins, A., Almeida, J., Sousa, J., Silva, E.P.: SWORDFISH: an Autonomous Surface Vehicle for Network Centric Operations. In: OCEANS 2007 - Europe. pp. 1–6 (2007). - doi:10.1109/OCEANSE.2007.4302467
First Test Area for Autonomous Ships Opened in Finland: https://worldmaritimenews.com.
First Unmanned Vessel Joins UK Ship Register: https://worldmaritimenews.com.
Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley (1994).
Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Sons, Ltd (2011).
Gu, Y., Goez, J.C., Guajardo, M., Wallace, S.W.: Autonomous vessels: state of the art and potential opportunities in logistics. International Transactions in Operational Research. 28, 4, 1706–1739 (2021). - doi:10.1111/itor.12785
Guidelines for Autonomous Shipping: https://www.bureauveritas.jp.
Hine, R., Willcox, S., Hine, G., Richardson, T.: The Wave Glider: A Wave-Powered autonomous marine vehicle. In: OCEANS 2009. pp. 1–6 (2009). - doi:10.23919/OCEANS.2009.5422129
IMO: Interim guidelines for MASS trials. , London, UK (2018).
IMO: Regulatory scoping exercise for the use of maritime autonomous surface ships (MASS). , London, UK (2018).
IMO: Takes First Steps to Address Autonomous Ships, http://www.imo.org/en/, last accessed 2021/02/02.
iXblue-DriX USV: Rethinking the Traditional Model for Offshore Operations, https://www.hydro-international.com/content/article/rethinking-the-traditional-model-for-offshore-operations, last accessed 2021/04/25.
Jing, W., Liu, C., Li, T., Rahman, A.B.M.M., Xian, L., Wang, X., Wang, Y., Guo, Z., Brenda, G., Tendai, K.W.: Path Planning and Navigation of Oceanic Autonomous Sailboats and Vessels: A Survey. Journal of Ocean University of China. 19, 3, 609–621 (2020). - doi:10.1007/s11802-020-4144-7
Johnston, P., Poole, M.: Marine surveillance capabilities of the AutoNaut wave-propelled unmanned surface vessel (USV). In: OCEANS 2017 - Aberdeen. pp. 1–46 (2017). - doi:10.1109/OCEANSE.2017.8084782
Karlis, T.: Maritime law issues related to the operation of unmanned autonomous cargo ships. WMU Journal of Maritime Affairs. 17, 1, 119–128 (2018). - doi:10.1007/s13437-018-0135-6
Karvonen, H., Martio, J.: Human Factors Issues in Maritime Autonomous Surface Ship Systems Development. In: SINTEF Proceedings. SINTEF Academic Press (2019).
Kim, M., Joung, T.-H., Jeong, B., Park, H.-S.: Autonomous shipping and its impact on regulations, technologies, and industries. null. 4, 2, 17–25 (2020). - doi:10.1080/25725084.2020.1779427
Lambert, J., Manley, J.: Development of Unmanned Maritime Vehicle (UMV) Standards, An Evolving Trend. Sea Technology. 48, 12, (2007).
Larson, J., Bruch, M., Ebken, J.: Autonomous navigation and obstacle avoidance for unmanned surface vehicles. Presented at the Proc.SPIE May 9 (2006). - doi:10.1117/12.663798
Lee, S.-M., Kwon, K.-Y., Joh, J.: A Fuzzy Logic for Autonomous Navigation of Marine Vehicles Satisfying COLREG Guidelines. International Journal of Control, Automation, and Systems. 2, 2, 171–181 (2004).
Liu, Y., Bucknall, R.: Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean Engineering. 97, 126–144 (2015). - doi:10.1016/j.oceaneng.2015.01.008
Liu, Z., Zhang, Y., Yu, X., Yuan, C.: Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control. 41, 71–93 (2016). - doi:10.1016/j.arcontrol.2016.04.018
Manley, J.E.: Unmanned surface vehicles, 15 years of development. In: OCEANS 2008. pp. 1–4 (2008). - doi:10.1109/OCEANS.2008.5152052
Marichal, G.N., Acosta, L., Moreno, L., Méndez, J.A., Rodrigo, J.J., Sigut, M.: Obstacle avoidance for a mobile robot: A neuro-fuzzy approach. Fuzzy Sets and Systems. 124, 2, 171–179 (2001). - doi:10.1016/S0165-0114(00)00095-6
Marichal, G.N., Hernández, A., Rojas, J.A., Melón, E., Rodríguez, J.A., Padrón, I.: Sistema Inteligente de apoyo a maniobras de grandes buques en puertos. Revista Iberoamericana de Automática e Informática Industrial RIAI. 13, 3, 304–309 (2016). - doi:10.1016/j.riai.2016.03.005
Maritime Autonomous Surface Ships UK Code of Practice: https://www.maritimeuk.org.
MARS: Mayflower Autonomous Research Ship. NMIO Technical Bulletin. 10, 7–8 (2015).
Matía, F., Marichal, G.N., Jiménez, E.: Fuzzy Modeling and Control: Theory and Applications. Atlantis Press, Paris (2014).
Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning. Springer, Berlin, Heidelberg (1983).
Motwani, A.: A survey of uninhabited surface vehicles. (2012).
Munim, Z.H.: Autonomous ships: a review, innovative applications and future maritime business models. null. 20, 4, 266–279 (2019). - doi:10.1080/16258312.2019.1631714
Naeem, W., Sutton, R., Xu, T.: An integrated multi-sensor data fusion algorithm and autopilot implementation in an uninhabited surface craft. Ocean Engineering. 39, 43–52 (2012). - doi:10.1016/j.oceaneng.2011.11.001
NAVANTIA. USV Vendaval: https://www.innovaspain.com/navantia-barco-vendaval-ceuta/.
Nilsson, N.J.: Principles of Artificial Intelligence. Springer-Verlag, Berlin Heidelberg (1982).
Ocean Aero S10: UST-Magazine. 9, 22–31 (2015).
Ocean Infinity: Armada Fleet, https://oceaninfinity.com/marine-robotics/.
Perera, L.P.: Autonomous Ship Navigation Under Deep Learning and the Challenges in COLREGs. Presented at the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering September 25 (2018). - doi:10.1115/OMAE2018-77672
Poikonen, J., Hyvonen, M., Kolu, A., Jokela, T., Tissari, J., Paasio, A.: Remote and autonomous ships – The Next Steps, https://www.rolls-royce.com.
Polvara, R., Sharma, S., Wan, J., Manning, A., Sutton, R.: Obstacle Avoidance Approaches for Autonomous Navigation of Unmanned Surface Vehicles. Journal of Navigation. 71, 1, 241–256 (2018). - doi:10.1017/S0373463317000753
Porathe, T., Prison, J.: Situation awareness in remote control centres for unmanned ships. Presented at the Human Factors in Ship Design & Operation , London, UK (2014).
Praczyk, T.: Neural anti-collision system for Autonomous Surface Vehicle. Neurocomputing. 149, 559–572 (2015). - doi:10.1016/j.neucom.2014.08.018
R⊘dseth, Ø.J.: From concept to reality: Unmanned merchant ship research in Norway. In: 2017 IEEE Underwater Technology (UT). pp. 1–10 (2017). - doi:10.1109/UT.2017.7890328
Remote and Autonomous Ship: The next steps. AAWA Position Paper © Rolls-Royce, London, UK (2016).
Roberts, G.N., Sutton, R.: Advances in Unmanned Marine Vehicles. IET Digital Library (2006). - doi:10.1049/PBCE069E
Rolls-Royce: Rolls-Royce Opens Autonomous Ship Research and Development Centre in Finland. , London, UK (2021).
Rolls-Royce and Finferries Demonstrate World’s First Fully Autonomous Ferry: https://www.rolls-royce.com/media/press-releases/2018/03-12-2018.
Safety4Sea: Yara Birkeland to start sailing during 2021, https://safety4sea.com/yara-birkeland-to-start-sailing-during-2021/, last accessed 2021/04/25.
Saildrone: ATL2MED international scientific-technological mission launched – Plataforma Oceánica de Canarias, https://www.plocan.eu/en/saildrone-atl2med-international-scientific-technological-mission-launched/, last accessed 2021/04/25.
Sea Proven: Sphyrna 70 - Unmanned Surface Vehicle, http://www.seaproven.com/nos-realisations/sphyrna/, last accessed 2021/04/25.
SEA-KIT: Complete First ever International Commercial Unmanned Transit, http://www.oceannews.com.
Śmierzchalski, R., Kolendo, P.: Ship Evolutionary Trajectory Planning Method with Application of Polynomial Interpolation. In: Weintrit, A. (ed.) Activities in Navigation. CRC Press, London, UK (2015).
Song, R.: Path planning and bi-directional communication for unmanned surface vehicle. (2014).
Statheros, T., Howells, G., Maier, K.M.: Autonomous Ship Collision Avoidance Navigation Concepts, Technologies and Techniques. Journal of Navigation. 61, 1, 129–142 (2008). - doi:10.1017/S037346330700447X
Sutton, R., Sharma, S., Xao, T.: Adaptive navigation systems for an unmanned surface vehicle. null. 10, 3, 3–20 (2011). - doi:10.1080/20464177.2011.11020248
UTEK Unmanned Solutions for Maritime Applications: https://www.plocan.eu/la-direccion-general-de-la-marina-mercante-admite-a-tramite-el-primer-abanderamiento-en-espana-de-una-embarcacion-autonoma-no-tripulada/.
Verfuss, U.K., Aniceto, A.S., Harris, D.V., Gillespie, D., Fielding, S., Jiménez, G., Johnston, P., Sinclair, R.R., Sivertsen, A., Solbø, S.A., Storvold, R., Biuw, M., Wyatt, R.: A review of unmanned vehicles for the detection and monitoring of marine fauna. Marine Pollution Bulletin. 140, 17–29 (2019). - doi:10.1016/j.marpolbul.2019.01.009
Wright, R.G.: Unmanned and Autonomous Ships : An Overview of MASS. Routledge (2020). - doi:10.1201/9780429450655
Wróbel, K., Montewka, J., Kujala, P.: Towards the assessment of potential impact of unmanned vessels on maritime transportation safety. Reliability Engineering & System Safety. 165, 155–169 (2017). - doi:10.1016/j.ress.2017.03.029
XOCEAN XO-450: UST-Magazine. 22, 22–32 (2018).
Xu, T., Sutton, R., Sharma, S.: A multi-sensor data fusion navigation system for an unmanned surface vehicle. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 221, 4, 167–182 (2007). - doi:10.1243/14750902JEME72
Yan, R., Pang, S., Sun, H., Pang, Y.: Development and missions of unmanned surface vehicle. Journal of Marine Science and Application. 9, 4, 451–457 (2010). - doi:10.1007/s11804-010-1033-2
Yara Birkeland: Rina, https://www.rina.org.uk/yarabirkeland.html.
Zhang, D., Cronin, M.F., Meinig, C., Farrar, J.T., Jenkins, R., Peacock, D., Keene, J., Sutton, A., Yang, Q.: Comparing Air-Sea Flux Measurements from a New Unmanned Surface Vehicle and Proven Platforms During the SPURS-2 Field Campaign. Oceanography. 32, 2, (2019). - doi:10.5670/oceanog.2019.220
Citation note:
Barrera C., Padrón Armas I., Luis F., Llinas O., Marichal Plasencia G.N.: Trends and Challenges in Unmanned Surface Vehicles (USV): From Survey to Shipping. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 15, No. 1, doi:10.12716/1001.15.01.13, pp. 135-142, 2021
Authors in other databases:
Carlos Barrera:
Isidro Padrón Armas:
Felipe Luis:
Octavio Llinas:
Graciliano Nicolás Marichal Plasencia: ORCID iD iconorcid.org/0000-0002-6490-0556 Scopus icon6602751574

Other publications of authors:

I. Padrón Armas, D. Ávila Prats, E. Melón Rodríguez, I. Franquis Vera, J.Á. Rodríguez Hernández
G.N. Marichal Plasencia, D. Ávila, A. Hernández, I. Padrón Armas
G.N. Marichal Plasencia, D. Ávila Prats, A. Conesa Rosique, J.Á. Rodríguez Hernández, G. Iglesias

File downloaded 1124 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony