Journal is indexed in following databases:



2024 Journal Impact Factor - 0.6
2024 CiteScore - 1.9



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
Towards Improved Ship Weather Routing Through Multi-Objective Optimization with High Performance Computing Support
1 Gdańsk University of Technology, Gdańsk, Poland
ABSTRACT: Maritime transport remains integral to the global economy, facilitating the cost-efficient and scalable movement of cargo and individuals over varying distances. Modern and effective ship routing solutions not only minimize voyage time and operational costs (including fuel consumption), but also improve resource allocation and environmental sustainability. Their planning process relies heavily on optimization algorithms capable of addressing numerous environmental and operational constraints, particularly in the context of dynamic and often unpredictable weather conditions. A widely adopted approach in the literature is to formulate the ship route optimization problem as a multi-objective optimization (MOO) task, incorporating both static and dynamic constraints. The complexity of this formulation increases significantly when uncertainties related to weather conditions and ship behaviour are introduced, further complicating the optimization process. Meta-heuristic algorithms have gained prominence as effective tools for addressing i.e. complex multi-objective, constrained and nonlinear problems. Despite their demonstrated computational efficiency, the overall process of ship weather route optimization often remains computationally intensive, posing significant challenges for real-time or near-real-time applications in operational maritime contexts. High Performance Computing (HPC) emerges as a viable approach to overcome this limitation. HPC refers mostly to the use of advanced computational systems composed of parallel processing architectures (such as CUDA, OpenMP, MPI, among others) to solve much faster and more efficiently complex and data-intensive problems. Originating in scientific research domains, HPC technologies have rapidly evolved and are now being applied to support solving a wide range of problem in computer science and engineering. Employing HPC-enabled computations allows for designing a scalable and efficient framework for tackling the growing complexity of ship weather routing. This paper discusses the possibilities of HPC integration with MOO for ship weather routing, aiming to demonstrate how HPC-enabled methodologies can improve the performance and real-life applicability of the routing systems.
REFERENCES
S. Deng and Z. Mi, “A review on carbon emissions of global shipping,” Mar. Dev., vol. 1, no. 1, pp. 1–10, 2023, doi: 10.1007/s44312-023-00001-2.
ShipUniverse, “Top 30 Reasons Why Maritime Shipping Is the Backbone of Global Trade,” 2024.
J. Verschuur, E. E. Koks, and J. W. Hall, “Ports’ criticality in international trade and global supply-chains.”
Statista, “Breakdown of CO$_2$ emissions in the transportation sector worldwide 2020, by subsector,” 2021. [Online]. Available: https://www.statista.com/statistics/1185535/transport-carbon-dioxide-emissions-breakdown/
W. Shao, P. Zhou, and S. K. Thong, “Development of a novel forward dynamic programming method for weather routing,” J. Mar. Sci. Technol., vol. 17, no. 2, pp. 239–251, Jun. 2012, doi: 10.1007/s00773-011-0152-z. - doi:10.1007/s00773-011-0152-z
L. P. Perera and C. G. Soares, “Weather routing and safe ship handling in the future of shipping,” Ocean Eng., vol. 130, pp. 684–695, 2017, doi: 10.1016/j.oceaneng.2016.09.007. - doi:10.1016/j.oceaneng.2016.09.007
L. Walther, A. Rizvanolli, M. Wendebourg, and C. Jahn, “Modeling and Optimization Algorithms in Ship Weather Routing,” Int. J. e-Navigation Marit. Econ., vol. 4, pp. 31–45, Jun. 2016, doi: 10.1016/j.enavi.2016.06.004. - doi:10.1016/j.enavi.2016.06.004
J. Szlapczynska and R. Szlapczynski, “Preference-based evolutionary multi-objective optimization in ship weather routing,” Appl. Soft Comput. J., vol. 84, Nov. 2019, doi: 10.1016/j.asoc.2019.105742. - doi:10.1016/j.asoc.2019.105742
E. G. Talbi, M. Basseur, A. J. Nebro, and E. Alba, “Multi-objective optimization using metaheuristics: Non-standard algorithms,” Int. Trans. Oper. Res., vol. 19, no. 1–2, pp. 283–305, Jan. 2012, doi: 10.1111/j.1475-3995.2011.00808.x. - doi:10.1111/j.1475-3995.2011.00808.x
P. Czarnul, J. Proficz, and K. Drypczewski, “Survey of Methodologies, Approaches, and Challenges in Parallel Programming Using High-Performance Computing Systems,” 2020, Hindawi Limited. doi: 10.1155/2020/4176794. - doi:10.1155/2020/4176794
Ü. Öztürk, M. Akdağ, and T. Ayabakan, “A review of path planning algorithms in maritime autonomous surface ships: Navigation safety perspective,” May 01, 2022, Elsevier Ltd. doi: 10.1016/j.oceaneng.2022.111010. - doi:10.1016/j.oceaneng.2022.111010
K. SKÓRA and A. WOLSKI, “VOYAGE PLANNING,” Sci. J. Silesian Univ. Technol. Ser. Transp., vol. 92, pp. 123–128, Sep. 2016, doi: 10.20858/sjsutst.2016.92.12. - doi:10.20858/sjsutst.2016.92.12
James and Richard W, Application of wave forecasts to marine navigation. New York University, 1957.
Hagiwara and Hideki, “Weather routing of (sail-assisted) motor vessels.,” Technische Universiteit Delft, 1989.
Y. H. Lin, M. C. Fang, and R. W. Yeung, “The optimization of ship weather-routing algorithm based on the composite influence of multi-dynamic elements,” Appl. Ocean Res., vol. 43, pp. 184–194, 2013, doi: 10.1016/j.apor.2013.07.010. - doi:10.1016/j.apor.2013.07.010
Y. Chen, W. Tian, and W. Mao, “Strategies to improve the isochrone algorithm for ship voyage optimisation,” Ships Offshore Struct., 2024, doi: 10.1080/17445302.2024.2329011. - doi:10.1080/17445302.2024.2329011
D. Sen and C. P. Padhy, “An approach for development of a ship routing algorithm for application in the North Indian Ocean region,” Appl. Ocean Res., vol. 50, pp. 173–191, 2015, doi: 10.1016/j.apor.2015.01.019. - doi:10.1016/j.apor.2015.01.019
K. Takashima, B. Mezaoui, and R. Shoji, “On the fuel saving operation for coastal merchant ships using weather routing,” Mar. Navig. Saf. Sea Transp., vol. 3, no. 4, pp. 431–436, 2009, doi: 10.1201/9780203869345.ch75. - doi:10.1201/9780203869345.ch75
M. Zyczkowski and R. Szlapczynski, “Collision risk-informed weather routing for sailboats,” Reliab. Eng. Syst. Saf., vol. 232, no. November 2022, p. 109015, 2023, doi: 10.1016/j.ress.2022.109015. - doi:10.1016/j.ress.2022.109015
C. U. Bottner, “Weather routing for ships in degraded condition,” in Proceedings of the International Symposium on Maritime Safety, Security and Environmental Protection. Athens, Greece, 2007.
S. Calvert, E. Deakins, and R. Motte, “A Dynamic System for Fuel Optimization Trans-Ocean,” J. Navig., vol. 44, no. 2, pp. 233–265, 1991, doi: 10.1017/S0373463300009978. - doi:10.1017/S0373463300009978
C. de Wit, “Proposal for Low Cost Ocean Weather Routeing,” J. Navig., vol. 43, no. 3, pp. 428–439, 1990, doi: 10.1017/S0373463300014053. - doi:10.1017/S0373463300014053
H. Wang, W. Mao, and L. Eriksson, “A Three-Dimensional Dijkstra’s algorithm for multi-objective ship voyage optimization,” Ocean Eng., vol. 186, no. June, p. 106131, 2019, doi: 10.1016/j.oceaneng.2019.106131. - doi:10.1016/j.oceaneng.2019.106131
J. Yang, L. Wu, and J. Zheng, “Multi-Objective Weather Routing Algorithm for Ships: The Perspective of Shipping Company’s Navigation Strategy,” J. Mar. Sci. Eng., vol. 10, no. 9, 2022, doi: 10.3390/jmse10091212. - doi:10.3390/jmse10091212
W. Zhao, H. Wang, J. Geng, W. Hu, Z. Zhang, and G. Zhang, “Multi-Objective Weather Routing Algorithm for Ships Based on Hybrid Particle Swarm Optimization,” J. Ocean Univ. China, vol. 21, no. 1, pp. 28–38, 2022, doi: 10.1007/s11802-022-4709-8. - doi:10.1007/s11802-022-4709-8
R. Dębski and R. Dreżewski, “Multi-Objective Ship Route Optimisation Using Estimation of Distribution Algorithm,” Appl. Sci., vol. 14, no. 13, 2024, doi: 10.3390/app14135919. - doi:10.3390/app14135919
X. Li, H. Wang, and Q. Wu, “Multi-objective optimization in ship weather routing,” 2017 Constr. Nonsmooth Anal. Relat. Top. (Dedicated to Mem. V.F. Demyanov), CNSA 2017 - Proc., pp. 1–4, 2017, doi: 10.1109/CNSA.2017.7973982. - doi:10.1109/CNSA.2017.7973982
R. Szlapczynski, J. Szlapczynska, and R. Vettor, “Ship weather routing featuring w-MOEA/D and uncertainty handling,” Appl. Soft Comput., vol. 138, p. 110142, 2023, doi: 10.1016/j.asoc.2023.110142. - doi:10.1016/j.asoc.2023.110142
R. Szlapczynski and J. Szlapczynska, “W-dominance: Tradeoff-inspired dominance relation for preference-based evolutionary multi-objective optimization,” Swarm Evol. Comput., vol. 63, no. March 2020, p. 100866, 2021, doi: 10.1016/j.swevo.2021.100866. - doi:10.1016/j.swevo.2021.100866
Y. Chen, “Department of Mechanics and Maritime Sciences Isochrone-Based Voyage Optimization Methods to Increase Shipping Energy Efficiency,” 2024.
Y. W. Shin et al., “Near-optimal weather routing by using improved A* algorithm,” Appl. Sci., vol. 10, no. 17, 2020, doi: 10.3390/app10176010. - doi:10.3390/app10176010
L. Qian, H. Li, M. Hong, Y. Qi, and Z. Guo, “Avoiding sudden maritime risk: A new variable speed route planning model by integrating Spatio-temporal dimension,” Ocean Eng., vol. 288, no. P1, p. 115950, 2023, doi: 10.1016/j.oceaneng.2023.115950. - doi:10.1016/j.oceaneng.2023.115950
D. Ma, S. Zhou, Y. Han, W. Ma, and H. Huang, “Multi-objective ship weather routing method based on the improved NSGA-III algorithm,” J. Ind. Inf. Integr., vol. 38, no. January, p. 100570, 2024, doi: 10.1016/j.jii.2024.100570. - doi:10.1016/j.jii.2024.100570
G. Mannarini, D. N. Subramani, P. F. J. Lermusiaux, and N. Pinardi, “Graph-Search and Differential Equations for Time-Optimal Vessel Route Planning in Dynamic Ocean Waves,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 8, pp. 3581–3593, 2020, doi: 10.1109/TITS.2019.2935614. - doi:10.1109/TITS.2019.2935614
G. Mannarini, M. L. Salinas, L. Carelli, N. Petacco, and J. Orović, “VISIR-2: Ship weather routing in Python,” Geosci. Model Dev., vol. 17, no. 10, pp. 4355–4382, 2024, doi: 10.5194/gmd-17-4355-2024. - doi:10.5194/gmd-17-4355-2024
F. Yin and F. Shi, A Comparative Survey of Big Data Computing and HPC: From a Parallel Programming Model to a Cluster Architecture, vol. 50, no. 1. Springer US, 2022. doi: 10.1007/s10766-021-00717-y. - doi:10.1007/s10766-021-00717-y
D. K. Panda, Ed., Supercomputing Frontiers, vol. 12082. in Lecture Notes in Computer Science, vol. 12082. Cham: Springer International Publishing, 2020. doi: 10.1007/978-3-030-48842-0. - doi:10.1007/978-3-030-48842-0
F. Sattler, B. Carrillo-Perez, S. Barnes, K. Stebner, M. Stephan, and G. Lux, “Embedded 3D reconstruction of dynamic objects in real time for maritime situational awareness pictures,” Vis. Comput., vol. 40, no. 2, pp. 571–584, 2024, doi: 10.1007/s00371-023-02802-4. - doi:10.1007/s00371-023-02802-4
T. Nakaegawa, “High-Performance Computing in Meteorology under a Context of an Era of Graphical Processing Units,” Computers, vol. 11, no. 7, 2022, doi: 10.3390/computers11070114. - doi:10.3390/computers11070114
M. Liang, K. Liu, R. Gao, and Y. Li, “Integrating GPU-Accelerated for Fast Large-Scale Vessel Trajectories Visualization
Citation note:
Abdalsalam M., Szłapczyńska J.: Towards Improved Ship Weather Routing Through Multi-Objective Optimization with High Performance Computing Support. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 19, No. 1, doi:10.12716/1001.19.01.12, pp. 93-103, 2025
Authors in other databases:
Mohammed Abdalsalam:

Other publications of authors:


File downloaded 47 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony