Journal is indexed in following databases:

2022 Journal Impact Factor - 0.6
2022 CiteScore - 1.7




ISSN 2083-6473
ISSN 2083-6481 (electronic version)




Associate Editor
Prof. Tomasz Neumann

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
Simulation Environment in Python for Ship Encounter Situations
1 Gdynia Maritime University, Gdynia, Poland
2 Gdańsk University of Technology, Gdańsk, Poland
ABSTRACT: To assess the risk of collision in radar navigation distance-based safety measures such as Distance at the Closest Point of Approach and Time to the Closest Point of Approach are most commonly used. Also Bow Crossing Range and Bow Crossing Time measures are good complement to the picture of the meeting situation. When ship safety domain is considered then Degree of Domain Violation and Time to Domain Violation can be applied. This manuscript provides a description of a ship encounter simulation software tool written in Python accompanied by a case study, implementing all the measures mentioned above. It offers a radar-like Graphical User Interface (GUI), is able to track AIS-based traffic or encounter scenarios stored in local files. The tool features several additional functions e.g. Variable Range Marker (VRM) or Electronic Bearing Line (EBL). The simulator might be a test sandbox for advanced collision avoidance algorithms.
IMO, “Convention on the International Regulations for Preventing Collisions at Sea,” COLREG.
R. Szlapczynski and J. Szlapczynska, “An analysis of domain-based ship collision risk parameters,” Ocean Eng., vol. 126, pp. 47–56, 2016, doi: 10.1016/j.oceaneng.2016.08.030. - doi:10.1016/j.oceaneng.2016.08.030
“SOLAS Convention.”,-1974.aspx
Ł. Stolzmann, “Bow Crossing Range Correlation of Small Vessels - Ais Data Analysis With Prospective Application To Autonomous Ships.,” Sci. J. Gdynia Maritme Univ., vol. 6988, no. 121, pp. 41–52, 2022, doi: 10.26408/121.04.
M. Gil, P. Kozioł, K. Wróbel, and J. Montewka, “Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics,” Reliab. Eng. Syst. Saf., vol. 220, 2022, doi: 10.1016/j.ress.2021.108311. - doi:10.1016/j.ress.2021.108311
A Guide to the Collision Avoidance Rules. Elsevier, 2012. doi: 10.1016/C2010-0-68322-2. - doi:10.1016/C2010-0-68322-2
R. Szlapczynski and J. Szlapczynska, “Review of ship safety domains: Models and applications,” Ocean Eng., vol. 145, no. January, pp. 277–289, 2017, doi: 10.1016/j.oceaneng.2017.09.020. - doi:10.1016/j.oceaneng.2017.09.020
R. Szlapczynski and J. Szlapczynska, “A ship domain-based model of collision risk for near-miss detection and Collision Alert Systems,” Reliab. Eng. Syst. Saf., vol. 214, no. May, p. 107766, 2021, doi: 10.1016/j.ress.2021.107766. - doi:10.1016/j.ress.2021.107766
M. Gil, “A concept of critical safety area applicable for an obstacle-avoidance process for manned and autonomous ships,” Reliab. Eng. Syst. Saf., vol. 214, p. 107806, 2021, doi: 10.1016/j.ress.2021.107806. - doi:10.1016/j.ress.2021.107806
S. Blindheim, T. A. Johansen, "Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control," IEEE Access, vol. 10, pp. 3716-3737, 2022, doi: 10.1109/ACCESS.2021.3139767. - doi:10.1109/ACCESS.2021.3139767
Z. Pietrzykowski, P. Wołejsza, Ł. Nozdrzykowski, P. Borkowski, P. Banaś, J. Magaj, J. Chomski, M. Mąka, S. Mielniczuk, A. Pańka, P. Hatłas-Sowińska, E. Kulbiej, M. Nozdrzykowska “The autonomous navigation system of a sea-going vessel” Ocean Engineering, Vol. 261, 2022, 112104, - doi:10.1016/j.oceaneng.2022.112104
P. Wołejsza, J. Magaj, R. Gralak “Navigation Decision Supporting System (NAVDEC) — testing on full mission simulator” Annual of Navigation 20(1), 2013, - doi:10.2478/aon-2013-0010
J. Lisowski, "Dynamic Games Methods in Synthesis of Safe Ship Control Algorithms", Journal of Advanced Transportation, vol. 2018, Article ID 7586496, 8 pages, 2018. - doi:10.1155/2018/7586496
A. Lazarowska,”Evaluation of a deterministic real-time path planning algorithm for autonomous ships using radar data” Procedia Computer Science, Vol. 192, 2021, pp. 863-872, - doi:10.1016/j.procs.2021.08.089
Ł. Kuczkowski, R. Śmierzchalski, (2017). Path planning algorithm for ship collisions avoidance in environment with changing strategy of dynamic obstacles. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds) Trends in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in Intelligent Systems and Computing, vol 577. Springer, Cham. - doi:10.1007/978-3-319-60699-6_62
Y. Huang, L. Chen, R. R. Negenborn, P.H.A.J.M. van Gelder “A ship collision avoidance system for human-machine cooperation during collision avoidance” Ocean Engineering, Vol. 217, 2020, - doi:10.1016/j.oceaneng.2020.107913
Citation note:
Stolzmann Ł., Szłapczyńska J.: Simulation Environment in Python for Ship Encounter Situations. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 17, No. 4, doi:10.12716/1001.17.04.22, pp. 953-962, 2023
Authors in other databases:
Łukasz Stolzmann:

Other publications of authors:

File downloaded 96 times

Important: cookie usage
The website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony