Journal is indexed in following databases:



2022 Journal Impact Factor - 0.6
2022 CiteScore - 1.7



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
AIS R-Mode Trilateration for GPS Positioning and Timing Insurance
1 National University “Odessa Maritime Academy”, Odessa, Ukraine
ABSTRACT: Satellite navigation is the backbone of maritime navigation today. However, the technical vulnerability of on-board Global Navigation Satellite System (GNSS) receivers the satellite system greatly destabilizes maritime security due to the loss of ship’s position and accurate time. This article devoted to study an alternative method for obtaining coordinates and accurate time based on the use of automatic identification system (AIS) radio channels, so-called range mode (R-Mode). We use other AIS ship stations with reliable position data as reference stations and determine time of arrival for received AIS transmissions. To improve the accuracy of measuring signal arrival instance in the time difference of arrival (TDOA), that we utilize for trilateration, it is proposed signal oversampling and applying the fast Fourier transform (FFT) to the product of quadrature components of the baseband Gaussian minimum shift keying (GMSK) signal in the window of AIS time slot. To take into account the movement of other ships, appropriate coordinate corrections are foreseen, which can be calculated by dead reckoning or by the inertial navigation system of our ship. The proposed method is fully compatible with the existing AIS signals and may be employed in critical situations of locally limited (jamming, spoofing) GNSS abilities. It can be implemented as a separate unit, working for receiving in parallel with the mandatory AIS transponder.
REFERENCES
Bhatti J., Humphreys T. “Hostile Control of Ships via False GPS Signals: Demonstration and Detection,” Navigation, Journal of the Institute of Navigation, vol. 64, no. 1, 2017, pp. 51–66. - doi:10.1002/navi.183
Bronk K., Koncicki P., Lipka A., Niski R., Wereszko B. “Concept, signal design, and measurement studies of the R-mode Baltic system”. NAVIGATION: Journal of the Institute of Navigation. Vol. 68(3), 2021, pp. 465-483. - doi:10.1002/navi.443
Carrillo A. P. “Surface Crews Need More Tools to Navigate without GPS”. U.S. Naval Institute Proceedings, July 2022, Vol. 148/7/1,433. Surface Crews Need More Tools to Navigate without GPS | Proceedings - July 2022 Vol. 148/7/1,433 (usni.org)
COM-1827SOFT GMSK DEMODULATOR https://comblock.com/download/com1827soft_GMSK_demod.pdf
Huai S., Zhang S., Zhang J., Huang K. “Holographic detection of AIS real-time signals based on sparse representation”. EURASIP Journal on Wireless Communications and Networking, 2019. - doi:10.1186/s13638-019-1404-6
IMO MSC.1/Circular.1575. Guidelines for Shipborne Position, Navigation And Timing (PNT) Data Processing. 2017.
Jamming and Spoofing of Global Navigation Satellite Systems (GNSS). INTERTANKO, 2019.
Johnson G., Swaszek P. “Feasibility Study of R-Mode using AIS Transmissions Investigation of possible methods to implement a precise GNSS independent timing signal for AIS transmissions”. ACCSEAS Project. 2014.
Major F.G. Quo Vadis: Evolution of Modern Navigation. The Rise of Quantum Techniques. Springer. 2013. 440 p. - doi:10.1007/978-1-4614-8672-5
Marcos E. Pérez, Konovaltsev A., Caizzone, S., et al. “Interference and Spoofing Detection for GNSS Maritime Applications using Direction of Arrival and Conformal Antenna Array”. 31st International Technical Meeting of the Satellite Division of The Institute of Navigation: conference paper. ION GNSS+, 2018. pp. 2907-2922. - doi:10.33012/2018.15901
Neumann T. “Automotive and telematics transportation systems”, 2017 International Siberian Conference on Control and Communications, SIBCON, 2017, 10.1109/SIBCON.2017.7998555. - doi:10.1109/SIBCON.2017.7998555
Recommendation ITU-R M.1371–5 (2014) Technical characteristics for an automatic identification system using time division multiple access in the VHF maritime mobile frequency band.
Rieck C., Gewies S., Grundhöfer L., Hoppe M. “Synchronization of R-Mode Base Stations”. 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF), 2020. - doi:10.1109/IFCS-ISAF41089.2020.9234840
Satellite-derived Time and Position: A Study of Critical Dependencies, edited by S. Battersby, U.K. Government Office for Science, London, U.K., 2018.
Sirola N. “Closed-form Algorithms in Mobile Positioning: Myths and Misconceptions”, Positioning Navigation and Communication (WPNC), 2010. - doi:10.1109/WPNC.2010.5653789
Citation note:
Shishkin A.V., Konovets V., Koshevyy V.M.: AIS R-Mode Trilateration for GPS Positioning and Timing Insurance. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 18, No. 2, doi:10.12716/1001.18.02.13, pp. 369-367, 2024
Authors in other databases:
Aleksandr Shishkin:
Victor Konovets:

Other publications of authors:


File downloaded 73 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony