HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@am.gdynia.pl
The Theoretical Basis of the Concept of Using the Controlled Pyrotechnical Reaction Method as an Energy Source in Transportation from the Sea Bed
1 AGH University of Science and Technology, Kraków, Poland
ABSTRACT: In recent years we have observed the global growing interest in undersea exploitation of mineral deposits. Research on various concepts of operating systems on the seabed has been conducted, where different methods of transporting excavated material from the bottom to the surface are used. Great depths, where there are the most interesting resources (eg. IOM lot for the Clarion-Clipperton 4500 m) set very high technical and technological demands which results in intensive search for solutions. The authors of the paper want to explain the concept of the use of pyrotechnic materials for transportation in the aquatic environment. The presented method is designed for the cyclic transport from great depths (less than 200 m from the seabed). The principle of operation of the relay unit is based on the change in the average density of the entire module which is inseparably connected with the force of buoyancy acting on the submerged body. Changing the density of the whole module to the given depth of immersion is strictly dependent on the amount of energy supplied to the system by a power source in the form of a controlled pyrotechnic reaction. However, during the ascent energy demand decreases. The problem of transport of spoil from depth not only boils down to such considerations as initiation of the process of ascent. One should also consider how to use the excess energy occurring during the movement of the object toward the surface. The authors of the paper present the concept of making the transport of cyclic depths (less than 200 m from the seabed) taking into account the optimal use of energy from controlled pyrotechnic reaction.
REFERENCES
Abramowski, T. & Kotliński, R. 2011. Współczesne wyzwania eksploatacji oceanicznych kopalin polimetalicznych. Górnictwo i geoinżynieria. Rok 35, zeszyt 5, pp.41-61.
Depowski, S. & Kotliński, R. & Rühle, E. & Szamałek, K. 1998. Surowce mineralne mórz i oceanów, Wydawnictwo Naukowe Scholar, Warszawa
Duckworth, R.A. 1977. Mechanics of Fluids. London: Longman Group Limited
Feynman, R.P. & Leighton, R.B. & Sands, M. 1977. The Feynman Lectures on Physics, vol.1. Addison Wesley
Filipek, W. & Broda, K. 2016. Theoretical foundation of the implementation of controlled pyrotechnical reactions as an energy source for transportation from the sea bed. Scientific Journals of the Maritime University of Szczecin 48 (120): 117-124
Filipek, W. & Broda, K. 2017. Experimental verification of the concept of the use of controlled pyrotechnic reaction as a source of energy as a part of the transport system from the seabed. In press
Halliday, D. & Resnick, R. 1978. Physics, Part I. New York: John Wiley & Sons, Inc.
http://www.nautilusminerals.com [12 March 2016]
http://www.peacesoftware.de/einigewerte/einigewerte_e.html
Karlic, S. 1984. Zarys górnictwa morskiego, Wydawnictwo „Śląsk”, Katowice
Roberson, J.A. & Crowe, C.T. 1995. Engineering Fluid Mechanics. John Wiley & Sons, Inc.
Sobota, J. et. al. 2005. Systemy i technologie wydobycia konkrecji z dna oceanów. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu nr 521, Monografie XLIII, Seria: Współczesne problemy inżynierii środowiska. Wrocław
SPC, 2013 Deep Sea Minerals: Sea-Floor Massive Sulphides, a physical, biological, environmental, and technical review. Baker, E., and Beaudoin, Y. (Eds.) Vol. 1A, Secretariat of the Pacific Community, ISBN 978-82-7701-119-6, Available from: http://gsd.spc.int/dsm/public/files/meetings/ TrainingWorkshop4/UNEP_vol1A.pdf [12 July 2015]
Tuliszka, E. 1980. Mechanika płynów. Warszawa: Państwowe Wydawnictwo Naukowe
Citation note:
Filipek W., Broda K.: The Theoretical Basis of the Concept of Using the Controlled Pyrotechnical Reaction Method as an Energy Source in Transportation from the Sea Bed. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 11, No. 4, doi:10.12716/1001.11.04.12, pp. 653-659, 2017
Authors in other databases:
Wiktor Filipek: Scopus icon36185413000 Scholar iconVIKEiWcAAAAJ
Krzysztof Broda: Scopus icon55658644400

Other publications of authors:


File downloaded 80 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony