ISSN 2083-6473
ISSN 2083-6481 (electronic version)




Associate Editor
Tomasz Neumann

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@am.gdynia.pl
Mobile Bridge - A Portable Design Simulator for Ship Bridge Interfaces
1 Carl von Ossietzky University of Oldenburg, Lower Saxony, Oldenburg, Germany
2 Institute of Information Technology, Oldenburg, Germany
3 Jade University of Applied Sciences, Wilhelmshaven, Germany
ABSTRACT: Developing new software components for ship bridges is challenging. Mostly due to high costs of testing these components in realistic environments. To reduce these costs the development process is divided into different stages. Whereas, the final test on a real ship bridge is the last step in this process. However, by dividing the development process into different stages new components have to be adapted to each stage individually. To improve the process we propose a mobile ship bridge system to fully support the development process from lab studies to tests in realistic environments. Our system allows developing new software components in the lab and setting it up on a ship bridge without interfering with the vessel's navigational systems. Therefore it is linked to a NaviBox to get necessary information such as GPS, AIS, compass, and radar information. Our system is embedded in LABSKAUS, a test bed for the safety assessment of new e-Navigation systems.
Ulrike Brüggemann and Stefan Strohschneider. 2009. Nautical PSI - Virtual Nautical Officers as Test Drivers in Ship Bridge Design. In Digital Human Modeling, Second International Conference, ICDHM 2009, Held as Part of HCI International 2009, San Diego, CA, USA, July 19-24, 2009. Proceedings, 355–364. https://doi.org/10.1007/978-3-642-02809-0_38 - doi:10.1007/978-3-642-02809-0_38
N. A. Costa, E. Holder, and S. N. MacKinnon. 2017. Implementing human centred design in the context of a graphical user interface redesign for ship manoeuvring. International Journal of Human-Computer Studies 100: 55–65. https://doi.org/10.1016/j.ijhcs.2016.12.006 - doi:10.1016/j.ijhcs.2016.12.006
Christian Denker. 2014. Assessing the Spatio-Temporal Fitness of Information Supply and Demand on an Adaptive Ship Bridge. In Knowledge Engineering and Knowledge Management, Patrick Lambrix, Eero Hyvönen, Eva Blomqvist, Valentina Presutti, Guilin Qi, Uli Sattler, Ying Ding and Chiara Ghidini (eds.). Springer International Publishing, 185–192. Retrieved September 28, 2015 from http://link.springer.com/chapter/10.1007/978-3-319-17966-7_27
Axel Hahn. 2014. Test Bed for Safety Assessment of New e-Navigation Systems. International Journal of e-Navigation and Maritime Economy 1: 14–28. https://doi.org/10.1016/j.enavi.2014.12.003 - doi:10.1016/j.enavi.2014.12.003
Axel Hahn, Andreas Lüdtke, and Cilli Sobiech. 2013. Safe Human Machine Interaction in Bridge Design. In Workshop Report e-Navigation Usability Workshop 2013, 7–8. Retrieved from http://www.amsa.gov.au/ community/events-and-conferences/documents/Report-enav-usability-workshop.pdf
Axel Hahn and Thoralf Noack. 2016. EMartitime Integrated Reference Platform. Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV.
Odd Sveinung Hareide and Runar Ostnes. 2016. Comparative study of the Skjold-class bridge- and simulator navigation training. 14. Retrieved March 28, 2017 from https://brage.bibsys.no/xmlui/handle/11250/2425167
Y. Hayuth, M. A. Pollatschek, and Y. Roll. 1994. Building A Port Simulator. Simulation 63, 3: 179–189. https://doi.org/10.1177/003754979406300307 - doi:10.1177/003754979406300307
Magnus Hontvedt and Hans Christian Arnseth. 2013. On the bridge to learn: Analysing the social organization of nautical instruction in a ship simulator. International Journal of Computer-Supported Collaborative Learning 8, 1: 89–112. https://doi.org/10.1007/s11412-013-9166-3 - doi:10.1007/s11412-013-9166-3
Helge Kristiansen and Kjetil Nordby. 2013. Towards A Design Simulator For Offshore Ship Bridges. In ECMS, 212–218. Retrieved October 27, 2016 from http://www.scs-europe.net/dlib/2013/ecms13papers/ese_ECMS2013_0142.pdf
Lochlan E. Magee. 1997. Virtual Reality Simulator (VRS) for Training Ship Handling Skills. In Virtual Reality, Training’s Future? Springer, Boston, MA, 19–29. https://doi.org/10.1007/978-1-4899-0038-8_3 - doi:10.1007/978-1-4899-0038-8_3
Kjetil Nordby and Sashidharan Komandur. 2014. Evolution of a Laboratory for Design of Advanced Ship Bridges. In HCI International 2014 - Posters’ Extended Abstracts, Constantine Stephanidis (ed.). Springer International Publishing, 118–122. Retrieved from http://dx.doi.org/10.1007/978-3-319-07857-1_21 - doi:10.1007/978-3-319-07857-1_21
Sören Schweigert, Volker Gollücke, Axel Hahn, and André Bolles. 2014. HAGGIS: A modelling and simulation platform for e-Maritime technology assessment. In Proceedings of 2nd International Symposium of Naval Architecture and Maritime.
Arne Stasch, André Bolles, and Axel Hahn. 2014. LABSKAUS - A physical platform for e-Maritime technology assessment. In Proceedings of 2nd International Symposium of Naval Architecture and Maritime.
Tim Claudius Stratmann and Susanne Boll. 2016. Demon Hunt - The Role of Endsley’s Demons of Situation Awareness in Maritime Accidents. In Human-Centered and Error-Resilient Systems Development (Lecture Notes in Computer Science), 203–212. https://doi.org/10.1007/978-3-319-44902-9_13 - doi:10.1007/978-3-319-44902-9_13
J. M. Varela and C. G. Soares. 2015. Interactive 3D desktop ship simulator for testing and training offloading manoeuvres. Applied Ocean Research 51: 367–380. https://doi.org/10.1016/j.apor.2015.01.013 - doi:10.1016/j.apor.2015.01.013
Mikael Wahlström, Hannu Karvonen, Eija Kaasinen, and Petri Mannonen. 2016. Designing User-Oriented Future Ship Bridges–An Approach for Radical Concept Design. Ergonomics in design: Methods and techniques: 217–231.
Zhang Xiufeng, Jin Yicheng, Yin Yong, and Li Zhihua. 2004. Ship Simulation Using Virtual Reality Technique. In Proceedings of the 2004 ACM SIGGRAPH International Conference on Virtual Reality Continuum and Its Applications in Industry (VRCAI ’04), 282–285. https://doi.org/10.1145/1044588.1044648 - doi:10.1145/1044588.1044648
Citation note:
Stratmann T.C., Gruenefeld U., Hahn A., Boll S., Stratmann J., Schweigert S.: Mobile Bridge - A Portable Design Simulator for Ship Bridge Interfaces. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 12, No. 4, doi:10.12716/1001.12.04.16, pp. 763-768, 2018
Authors in other databases:
Tim Claudius Stratmann: Scopus icon55838339500 Scholar iconUAQUpssAAAAJ
Uwe Gruenefeld: Scopus icon56426574900 Scholar iconhQwqJCQAAAAJ
Axel Hahn:
Susanne Boll: Scopus icon14522025600 Scholar icon1vsF_kYAAAAJ
J. Stratmann:
S. Schweigert:

Other publications of authors:

File downloaded 20 times

Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony