HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@am.gdynia.pl
Hydrodynamics of DARPA SUBOFF Submarine at Shallowly Immersion Conditions
1 Bulgarian Ship Hydrodynamics Centre, Varna, Bulgaria
ABSTRACT: Recently, the submarine missions are often evolving into operating to littoral areas, which require operating in shallow water. Such shallow water operations strongly contrast with the traditional ones due to the effect of a close to free water surface expressed mainly by surface suction force. This influence is particularly important for submarine maneuverability accounting for restricted area available. The prediction of submarine behavior in similar conditions requires adequate mathematical model and understanding of the additional hydrodynamic load generated near the surface region. The paper is aimed for better understanding of these issues and relating to development of a submarine simulation model, the experimental program of towing and PMM captive tests of DARPA Suboff submarine model were conducted at a towing tank. The influence of phenomenon such as effect of a close to free surface and Froude number at hydrodynamic forces and moments including control surfaces effectiveness were investigated and also was estimated directional stability of motion in horizontal plane.
REFERENCES
Joubert, P.N, 2004. “Some Aspects of Submarine Design”, Part 1. Hydrodynamics, DSTO Platforms Sciences Laboratory
Jagadeesh, P. & Murali, 2010. “RANS Predictions of Free Surface Effects on Axisymmetric Underwater Body”, Engineering Applications of Computational Fluid Mechanics, Vol. 4, No. 2, pp. 301-313 - doi:10.1080/19942060.2010.11015318
Han-Lieh Liu & Huang, T. T., 1998. “Summary of DARPA Suboff Experimental Program Data Experimental Program Data”, Naval Surface Warfare Center, CRDKNSWC/HD-1298-1998
Huang, T. T. & Han-Lieh Liu & Groves, N. C., December 1989. “Experiments of the darpa suboff program”, DTRC/SHD-1298-02
Zhu Q.& Liu Y.& Yue D., “Numerical Investigation of Free-Surface Signatures Generated by Submerged Object”, http://www.slc.ca.gov/About/Prevention_First/2006/MOTEMS-Numerical-Paper.pdf
Sout S.& Ananthakrishnan P. , 2011. “Hydrodynamic and Dynamic Analysis to Determine the Directional Stability of an Underwater Vehicle Near a Free Surface”, Journal of Applied Ocean Research, vol. 33, pp. 158-167 - doi:10.1016/j.apor.2010.12.003
Phillips A. & Furlong, M. &Turnock., S., 2010. “The Use of Computational Fluid Dynamics to Determine the Dynamic Stability of an Autonomous Underwater Vehicle”, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment | Volume:224, (4) - doi:10.1243/14750902JEME199
Renilson, M. & Ranmuthugala, D. & Dawson, E., Anderson, B., 2011. “Hydrodynamic design implications for a submarine operating near the surface”, Warship 2011: Naval Submarines and UUVs, Bath, UK, 29 – 30 June, ISBN No: 1-905040-86-5
Groves N. C.& Huang, T. T.&Chang, M. S., March 1989. “Geometric characteristics of darpa suboff models”, DTRC/SHD-1298-01
WIGLEY, W.C.S., 1953. “Water Forces on Submerged Bodies in Motion. Transactions”, Institute of Naval Architects, 95, pp. 268-279
Griffin, M.J., 2002. “Numerical predictions of manoeuvring characteristics of submarines operating near the free surface.”, Ph.D. Thesis in Ocean Engineering at the Massachusetts Institute of Technology
Spencer, B.J., 1968. Stability and Control of Submarines, Journal of the Royal Naval Scientific Service, vol. 23, No.3, UK
Roddy, R.F., 1990. Investigation of the Stability and Control Characteristics of Several Configurations of the Darpa Suboff Model (DTRC Model 5470) from Captive –Model Experiments, DTMB Techn. Report DTRC/SHD-1298-08, Bethesda, USA
Sobolev, G.V., 1976, Maneuverability of Ships and Ship Control Automation, Sudostroenie, Leningrad, (in Russian).
Milanov E.M. et all, 2010. Numerical and Experimental Prediction of the Inherent Course Stability of High Speed Catamaran in Deep and Shallow Water, Proceedings of 28th Symposium on Naval Hydrodynamics, Pasadena, USA
Barisic, M., 2011. Formation Guidance of AUVs Using Decentralized Control Functions, https://bib.irb.hr/datoteka/530921.Formation_Guidance_of_AUVs_Using_Decentralized_Control_Functions.pdf - doi:10.5772/24114
Phillips, A.B. 2010. Simulation of Self Propelled Autonomous Underwater Vehicle, PhD thesis, University of Southampton, UK
Citation note:
Efremov D.V., Milanov E.M.: Hydrodynamics of DARPA SUBOFF Submarine at Shallowly Immersion Conditions. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 13, No. 2, doi:10.12716/1001.13.02.09, pp. 337-342, 2019

File downloaded 23 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony