HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@am.gdynia.pl
An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle
1 Gdańsk University of Technology, Gdańsk, Poland
2 Electrotechnical Institute, Warsaw, Poland
ABSTRACT: In the paper the aim of an interdisciplinary research is presented. The research method is introduced. An object the unmanned autonomous maritime vehicle is briefly described. The key research problem concerns a combined model of the vehicle motion including the loads of lift and hydrodynamic nature. The model takes into account the gravity and displacement forces, resistance and thrust forces, lift and other hydrodynamic forces. One of the major research tasks is to precisely predict the position of the vehicle. To do that an integrated model of acquiring, analyzing and processing the signals is necessary. The processed signals may then be used for the precise steering of the vehicle. The vehicle should be equipped with a stabilization system. Some information on an integrated steering, positioning and stabilization system of the vehicle is briefly presented in the paper. Such the system enables to obtain a fully autonomous vehicle. Some information on the propulsion and underwater energy supply systems are presented in the paper, too.
REFERENCES
Albus J.S., 4D/RCS A Reference Model Architecture for Intelligent Unmanned Ground Vehicles. Proceedings of the SPIE 16th Annual International Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando, FL, April 1-5, 2002.
Brasel M., Adaptacyjny regulator LQR w układzie sterowania kątem kursowym I prędkością statku opisanego nieliniowym modelem dynamicznym MIMI. IAPGOŚ 2/2014, s.49-52.
Bieda R., Grygiel R., Wyznaczanie orientacji obiektu w przestrzeni z wykorzystaniem naiwnego filtru Kalmana. PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 1/2014
Borkowski P., Janusz Magaj J., Mąka M., Positioning based on the multi-sensor Kalman filter. Scientific Journals Maritime University of Szczecin, 2008, 13(85) pp. 5‐9.
Dudziak J. Teoria okrętu. Fundacja Promocji Przemysłu Okrętowego i Gospodarki Morskiej, Gdańsk 2008.
Faltinsen O.M. Sea Loads on Ships and Offshore Structures. Cambridge University Press, 1990.
Gal O., Unified Trajectory Planning Algorithms for Autonomous Underwater Vehicle Navigation. Hindawi Publishing Corporation, ISRN Robotics, Volume 2013, Article ID 329591, 6 pages.
Galceran E., Coverage path planning for autonomous underwater vehicles. Ph.D. Thesis, University of Girona 2014.
Gerigk M.K. Kompleksowa metoda oceny bezpieczeństwa statku w stanie uszkodzonym z uwzględnieniem analizy ryzyka, Monografie 101, Wydawnictwo Politechniki Gdańskiej, Gdańsk 2010.
Gerigk M.K., Wójtowicz S., Model systemu sterowania małego obiektu bezzałogowego poruszającego się na powierzchni wody. Logistyka 2014 nr 6.
Kato N., Toshihide Shigetomi T., Underwater Navigation for Long-Range Autonomous Underwater Vehicles Using Geomagnetic and Bathymetric Information. Advanced Robotics 23 (2009) 787–803.
Kinsey J.C., Eustice R.M., Whitcomb L.L., A survey of underwater vehicle navigation: recent advances and new challenges. Proceedings of IFAC conf. on Manoeuvring and Control of Marine craft. 2006, p. 12.
Madhaven R., Messina E., Albus J., Intelligent Vehicle Systems A 4D/RCS Approach. Nova Science Publishers, INC., New York 2006.
Neumann T., Multisensor data fusion in the decision process in sea transportation. Prace Wydziału Nawigacyjnego Akademii Morskiej w Gdyni, nr 22, 2008.
Pereira A. A., BinneyJ., Hollinger G. A., and Gaurav S. Sukhatme G. S., Risk-aware Path Planning for Autonomous Underwater Vehicles using Predictive Ocean Models. Journal of Field Robotics 30(5), 741–762 (2013).
Tahir A.M., Iqbal J., Underwater robotic vehicles: latest development trends and potential challenges. Science International (Lahore), 26(3),1111-1117,2014 ISSN 1013-5316.
Tan C. S., A collision avoidance system for autonomous underwater vehicles. Ph.D. Thesis The University of Plymouth, Faculty of Technology, School of Engineering, January 2006.
Teixeira F.J.C.M., Terrain-Aided Navigation and Geophysical Navigation of Autonomous Underwater Vehicles. . Ph.D. Thesis Universidade Técnica de Lisboa, 2007.
Thompson D.R., Chien S.,ChaoY. et al., “Spatiotemporal path planning in strong, dynamic, uncertain currents,” in Proceedings of the IEEE InternationalConference on Robotics and Automation (ICRA ’10), pp. 4778–4783, May 2010.
Thrun S., Burgard W., Fox D., Probabilistic Robotics. MIT Press, 2005.
Tomera M, Pozycyjne sterowanie ruchem statku z różnymi typami obserwatorów. Badania symulacyjne. Zeszyty Naukowe Akademii Morskiej w Gdyni, nr 78, marzec 2013.
Wang M.,Yu Y., Zeng B., Lin W., Hybrid Intelligent Control for Submarine Stabilization. International Journal of Advanced Robotic Systems, 2013, Vol. 10, 221:2013.
Citation note:
Gerigk M.K., Wójtowicz S.: An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 9, No. 4, doi:10.12716/1001.09.04.18, pp. 591-596, 2015

Other publications of authors:


File downloaded 621 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony