ISSN 2083-6473
ISSN 2083-6481 (electronic version)




Associate Editor
Tomasz Neumann

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@am.gdynia.pl
A Comparison of the Least Squares with Kalman Filter Methods Used in Algorithms of Fusion with Dead Reckoning Navigation Data
1 West Pomeranian University of Technology, Szczecin, Poland
2 Polish Naval Academy, Gdynia, Poland
ABSTRACT: Different calculation methods and configurations of navigation systems can be used in algorithms of navigational parameter fusion and estimation. The article presents a comparison of two methods of fusion of dead reckoning position with that from a positioning system. These are the least squares method and the Kalman filter. In both methods the minimization of the sum of squared measurement deviations is the optimization criterion. Both methods of navigation position parameter measurements fusion are illustrated using the data recorded during actual sea trials. With the same probabilistic model of dead reckoning navigation, the fusion of DR results with positioning data gives similar outcome.
Balakrishnan A.V.1984, Kalman Filtering Theory, Optimization Software, New York.
Banachowicz A.1988, Ocena dokładności pozycji w nawigacji zliczeniowej. Zeszyty Naukowe AMW nr 2, Gdynia.
Banachowicz A.1990, Metody integracji nawigacyjnego stadiometrycznego systemu satelitarnego z nawigacją zliczeniową. Zeszyty Naukowe AMW nr 1, Gdynia.
Banachowicz A.2001, Variants of Structural and Measurement Models of an Integrated Navigational System, „Annual of Navigation” No 3, Gdynia pages 5 – 18.
Banachowicz A.2013, Banachowicz G., Fuzja pomiarów nawigacyjnych GPS/INS/DR. Logistyka nr 6/2013. Poznań, ss. 2 – 8 (CD).
Banachowicz A., Piela P.2014, Nawigacyjny filtr integrujący GPS/DR. Logistyka nr 6.
Farrell J.A., Barth M.1999, The Global Positioning System & Inertial Navigation. McGrew-Hill, New York .
Kalman R.E.1960, A New Approach to Linear Filtering and Prediction Problems. ASME Journal of Basic Engineering, series D, 82,.
Kalman R.E., Bucy R.S.1961, A New Approach to Linear Filtering and Prediction Theory. ASME Journal of Basic Engineering, series D, 83,.
Mitchell H.B.2007, Multi-Sensor Data Fusion. An Introduction. Springer Verlag Berlin – Heidelberg .
Rao C.R.1973, Linear Statistical Inference and its Applications, Second Edition. John Wiley & Sons, New York.
Ristic B., Arulampalm S., Gordon N.2004, Beyond the Kalman Filter. Participle Filters for Tracking Applications, Artech House, Boston.
Citation note:
Banachowicz A., Wolski A.: A Comparison of the Least Squares with Kalman Filter Methods Used in Algorithms of Fusion with Dead Reckoning Navigation Data. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 11, No. 4, doi:10.12716/1001.11.04.16, pp. 691-695, 2017
Authors in other databases:
Andrzej Banachowicz: Scopus icon8578875900
Adam Wolski: Scopus icon8578876500

Other publications of authors:

File downloaded 476 times

Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony