Journal is indexed in following databases:



2022 Journal Impact Factor - 0.6
2022 CiteScore - 1.7



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
Multi-sensor Integration of Hydroacoustic and Optoelectronic Data Acquired from UAV and USV Vehicles on the Inland Waterbody
1 Gdynia Maritime University, Gdynia, Poland
2 Marine Technology Ltd., Gdynia, Poland
ABSTRACT: Hydrographic and photogrammetric measurements in the coastal zone are performed using hydroacoustic and optoelectronic methods, in particular with the use of Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicles (USV). It should be remembered that each of the devices registers data in a different spatial reference system. Therefore, before starting the analysis of geospatial data, e.g. terrain relief, it is necessary to carry out the process of their integration (harmonisation). The aim of this article is to present a multi-sensor integration of hydroacoustic and optoelectronic data acquired from UAV and USV vehicles on the inland waterbody. Bathymetric, Light Detection And Ranging (LiDAR) and photogrammetric measurements were carried out on the Lake Kłodno (Poland) in 2022 using the DJI Phantom 4 RTK UAV and two unmanned vessels: AutoDron, which was equipped with a Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) receiver and a Single Beam Echo Sounder (SBES), as well as HydroDron, on which a GNSS/Inertial Navigation System (INS) and a LiDAR sensor were mounted. The topo-bathymetric chart generated using the Surfer software by the Inverse Distance to a Power (IDP) (p=1) method was developed. A Digital Terrain Model (DTM) generated by the IDP method is characterised by high accuracy. The difference between the interpolated value and the measurement value for the R68 measure is 0.055 m, while for the R95 measure, it has a value of 0.187 m. Research has shown that multi-sensor fusion of geospatial data ensures the possibility of performing bathymetric, LiDAR and photogrammetric measurements in the coastal zone in accordance with the accuracy requirements provided for the International Hydrographic Organization (IHO) Exclusive Order (horizontal position error ≤ 1 m (p=0.95), vertical position error ≤ 0.15 m (p=0.95)).
REFERENCES
Abdalla, R. Introduction to Geospatial Information and Communication Technology (GeoICT); Springer: Berlin/Heidelberg, Germany, 2016; pp. 105–124. - doi:10.1007/978-3-319-33603-9_6
Brivio, P.A.; Colombo, R.; Maggi, M.; Tomasoni, R. Integration of Remote Sensing Data and GIS for Accurate Mapping of Flooded Areas. Int. J. Remote Sens. 2002, 23, 429–441. - doi:10.1080/01431160010014729
Brown, D.G.; Riolo, R.; Robinson, D.T.; North, M.; Rand, W. Spatial Process and Data Models: Toward Integration of Agent-based Models and GIS. J. Geogr. Syst. 2005, 7, 25–47. - doi:10.1007/s10109-005-0148-5
Popielarczyk, D.; Templin, T. Application of Integrated GNSS/Hydroacoustic Measurements and GIS Geodatabase Models for Bottom Analysis of Lake Hancza: The Deepest Inland Reservoir in Poland. Pure Appl. Geophys. 2014, 171, 997–1011. - doi:10.1007/s00024-013-0683-9
Cao, W.; Wong, M.H. Current Status of Coastal Zone Issues and Management in China: A Review. Environ. Int. 2007, 33, 985–992. - doi:10.1016/j.envint.2007.04.009
Cicin-Sain, B.; Knecht, R.W. Integrated Coastal and Ocean Management: Concepts and Practices, 1st ed.; Island Press: Washington, DC, USA, 1998.
Specht, M.; Specht, C.; Mindykowski, J.; Dąbrowski, P.; Maśnicki, R.; Makar, A. Geospatial Modeling of the Tombolo Phenomenon in Sopot Using Integrated Geodetic and Hydrographic Measurement Methods. Remote Sens. 2020, 12, 737. - doi:10.3390/rs12040737
Specht, M.; Stateczny, A.; Specht, C.; Widźgowski, S.; Lewicka, O.; Wiśniewska, M. Concept of an Innovative Autonomous Unmanned System for Bathymetric Monitoring of Shallow Waterbodies (INNOBAT System). Energies 2021, 14, 5370. - doi:10.3390/en14175370
Lewicka, O.; Specht, M.; Stateczny, A.; Specht, C.; Brčić, D.; Jugović, A.; Widźgowski, S.; Wiśniewska, M. Analysis of GNSS, Hydroacoustic and Optoelectronic Data Integration Methods Used in Hydrography. Sensors 2021, 21, 7831. - doi:10.3390/s21237831
Kang, M. Overview of the Applications of Hydroacoustic Methods in South Korea and Fish Abundance Estimation Methods. Fish. Aquat. Sci. 2014, 17, 369–376. - doi:10.5657/FAS.2014.0369
Makar, A. Determination of USV’s Direction Using Satellite and Fluxgate Compasses and GNSS-RTK. Sensors 2022, 22, 7895. - doi:10.3390/s22207895
Makar, A. Method of Determination of Acoustic Wave Reflection Points in Geodesic Bathymetric Surveys. Annu. Navig. 2008, 14, 1–89.
Parente, C.; Vallario, A. Interpolation of Single Beam Echo Sounder Data for 3D Bathymetric Model. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 6–13. - doi:10.14569/IJACSA.2019.0101002
Specht, C.; Specht, M.; Dabrowski, P. Comparative Analysis of Active Geodetic Networks in Poland. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference (SGEM 2017), Albena, Bulgaria, 27 June–6 July 2017. - doi:10.5593/sgem2017/22/S09.021
Wlodarczyk-Sielicka, M.; Stateczny, A. Comparison of Selected Reduction Methods of Bathymetric Data Obtained by Multibeam Echosounder. In Proceedings of the 2016 Baltic Geodetic Congress (BGC 2016), Gdańsk, Poland, 2–4 June 2016. - doi:10.1109/BGC.Geomatics.2016.22
Kondo, H.; Ura, T. Navigation of an AUV for Investigation of Underwater Structures. Control Eng. Pract. 2004, 12, 1551–1559. - doi:10.1016/j.conengprac.2003.12.005
Noureldin, A.; Karamat, T.B.; Georgy, J. Inertial Navigation System. In Fundamentals of Inertial Navigation, Satellite-based Positioning and Their Integration; Springer: Berlin/Heidelberg, Germany, 2013; pp. 125–166. - doi:10.1007/978-3-642-30466-8_4
Specht, M. Method of Evaluating the Positioning System Capability for Complying with the Minimum Accuracy Requirements for the International Hydrographic Organization Orders. Sensors 2019, 19, 3860. - doi:10.3390/s19183860
Stateczny, A. Radar Water Level Sensors for Full Implementation of the River Information Services of Border and Lower Section of the Oder in Poland. In Proceedings of the 17th International Radar Symposium (IRS 2016), Kraków, Poland, 10–12 May 2016. - doi:10.1109/IRS.2016.7497386
Wehr, A.; Lohr, U. Airborne Laser Scanning—An Introduction and Overview. ISPRS J. Photogramm. Remote Sens. 1999, 54, 68–82. - doi:10.1016/S0924-2716(99)00011-8
Williams, R.; Brasington, J.; Vericat, D.; Hicks, M.; Labrosse, F.; Neal, M. Chapter Twenty–Monitoring Braided River Change Using Terrestrial Laser Scanning and Optical Bathymetric Mapping. In Developments in Earth Surface Processes; Elsevier: Amsterdam, Netherlands, 2011; Volume 15, pp. 507–532. - doi:10.1016/B978-0-444-53446-0.00020-3
Liu, Y.; Wu, Z.; Zhao, D.; Zhou, J.; Shang, J.; Wang, M.; Zhu, C.; Luo, X. Construction of High-resolution Bathymetric Dataset for the Mariana Trench. IEEE Access 2019, 7, 142441–142450. - doi:10.1109/ACCESS.2019.2944667
Lubczonek, J.; Kazimierski, W.; Zaniewicz, G.; Lacka, M. Methodology for Combining Data Acquired by Unmanned Surface and Aerial Vehicles to Create Digital Bathymetric Models in Shallow and Ultra-shallow Waters. Remote Sens. 2022, 14, 105. - doi:10.3390/rs14010105
Masetti, G.; Andersen, O.; Andreasen, N.R.; Christiansen, P.S.; Cole, M.A.; Harris, J.P.; Langdahl, K.; Schwenger, L.M.; Sonne, I.B. Denmark’s Depth Model: Compilation of Bathymetric Data within the Danish Waters. Geomatics 2022, 2, 486-498. - doi:10.3390/geomatics2040026
Chief Inspectorate of Environmental Protection. Assessment of the State of Lake Waterbodies in 2017-2018 - table. Available online: http://www.gios.gov.pl/pl/mkoopz/8-pms/99-jeziora (accessed on 3 February 2023). (In Polish)
Kabiri, K. Accuracy Assessment of Near-shore Bathymetry Information Retrieved from Landsat-8 Imagery. Earth Sci. Inform. 2017, 10, 235–245. - doi:10.1007/s12145-017-0293-7
Menberu, Z.; Mogesse, B.; Reddythota, D. Evaluation of Water Quality and Eutrophication Status of Hawassa Lake Based on Different Water Quality Indices. Appl. Water Sci. 2021, 11, 61. - doi:10.1007/s13201-021-01385-6
Specht, C.; Specht, M.; Cywiński, P.; Skóra, M.; Marchel, Ł.; Szychowski, P. A New Method for Determining the Territorial Sea Baseline Using an Unmanned, Hydrographic Surface Vessel. J. Coast. Res. 2019, 35, 925–936. - doi:10.2112/JCOASTRES-D-18-00166.1
Specht, M.; Specht, C.; Lasota, H.; Cywiński, P. Assessment of the Steering Precision of a Hydrographic Unmanned Surface Vessel (USV) along Sounding Profiles Using a Low-cost Multi-Global Navigation Satellite System (GNSS) Receiver Supported Autopilot. Sensors 2019, 19, 3939. - doi:10.3390/s19183939
Specht, M.; Specht, C.; Szafran, M.; Makar, A.; Dąbrowski, P.; Lasota, H.; Cywiński, P. The Use of USV to Develop Navigational and Bathymetric Charts of Yacht Ports on the Example of National Sailing Centre in Gdańsk. Remote Sens. 2020, 12, 2585. - doi:10.3390/rs12162585
IHO. IHO Standards for Hydrographic Surveys, 6th ed.; Special Publication No. 44; IHO: Monaco, Monaco, 2020.
Stateczny, A.; Błaszczak-Bąk, W.; Sobieraj-Żłobińska, A.; Motyl, W.; Wisniewska, M. Methodology for Processing of 3D Multibeam Sonar Big Data for Comparative Navigation. Remote Sens. 2019, 11, 2245. - doi:10.3390/rs11192245
Stateczny, A.; Burdziakowski, P.; Najdecka, K.; Domagalska-Stateczna, B. Accuracy of Trajectory Tracking Based on Nonlinear Guidance Logic for Hydrographic Unmanned Surface Vessels. Sensors 2020, 20, 832. - doi:10.3390/s20030832
Stateczny, A.; Kazimierski, W.; Gronska-Sledz, D.; Motyl, W. The Empirical Application of Automotive 3D Radar Sensor for Target Detection for an Autonomous Surface Vehicle’s Navigation. Remote Sens. 2019, 11, 1156. - doi:10.3390/rs11101156
Kacprzak, M.; Wodziński K. Execution of Photo Mission by Manned Aircraft and Unmanned Aerial Vehicle. Transactions of the Institute of Aviation 2016, 2, 130–141. (In Polish)
Witek, M.; Jeziorska, J.; Niedzielski, T. Possibilities of Using Unmanned Air Photogrammetry to Identify Anthropogenic Transformations in River Channel. Landform Analysis 2013, 24, 115–126. (In Polish) - doi:10.12657/landfana.024.012
Czaplewski, K.; Specht, C. Determination of Coast and Base Line by GPS Techniques. Navigation and Hydrography 2002, 14, 137–144.
Harley, M.D.; Turner, I.L.; Short, A.D.; Ranasinghe, R. Assessment and Integration of Conventional, RTK-GPS and Image-derived Beach Survey Methods for Daily to Decadal Coastal Monitoring. Coast. Eng. 2011, 58, 194–205. - doi:10.1016/j.coastaleng.2010.09.006
Specht, C.; Weintrit, A.; Specht, M.; Dąbrowski, P. Determination of the Territorial Sea Baseline—Measurement Aspect. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 1–10. - doi:10.1088/1755-1315/95/3/032011
Council of Ministers of the Republic of Poland. Ordinance of the Council of Ministers of 15 October 2012 on the National Spatial Reference System; Council of Ministers of the Republic of Poland: Warsaw, Poland, 2012. (In Polish)
Lewicka, O.; Specht, M.; Stateczny, A.; Specht, C.; Dyrcz, C.; Dąbrowski, P.; Szostak, B.; Halicki, A.; Stateczny, M.; Widźgowski, S. Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot. Remote Sens. 2022, 14, 3525. - doi:10.3390/rs14153525
Ohlert, P.L.; Bach, M.; Breuer, L. Accuracy Assessment of Inverse Distance Weighting Interpolation of Groundwater Nitrate Concentrations in Bavaria (Germany). Environ. Sci. Pollut. Res. 2022, 30, 9445–9455. - doi:10.1007/s11356-022-22670-0
Tomczak, M., Spatial Interpolation and its Uncertainty Using Automated Anisotropic Inverse Distance Weighting (IDW) - Cross-Validation/Jackknife Approach. Journal of Geographic Information and Decision Analysis 1998, 2, 18–30.
Citation note:
Specht O.: Multi-sensor Integration of Hydroacoustic and Optoelectronic Data Acquired from UAV and USV Vehicles on the Inland Waterbody. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 17, No. 4, doi:10.12716/1001.17.04.04, pp. 791-798, 2023
Authors in other databases:

Other publications of authors:

A. Halicki, M. Specht, A. Stateczny, C. Specht, O. Specht

File downloaded 79 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony