Journal is indexed in following databases:



2022 Journal Impact Factor - 0.6
2022 CiteScore - 1.7



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
Model of the Motion of a Navigation Object in a Geocentric Coordinate System
ABSTRACT: In this paper we describe the creation of a model of the motion of a flying object in a geocentric coordinate system (ECEF - Earth-Centered, Earth-Fixed). Such a model can be used to investigate the accuracy and resistance of radio navigation systems to interference. The essence of the design of the model lies in the mathematical description of the motion of a flying object in a geocentric coordinate system. The flight trajectory of a flying object consists of one straight section and two turns. When creating a model, we assume a flight at a constant altitude. In this paper, we present one of the possible procedures for modelling the motion of a flying object in a geocentric coordinate system. We chose the initial coordinates of the flying object according to flightradar 24. We used the Matlab software for computer simulation.
REFERENCES
Džunda, M.: Modeling of the Flight Trajectory of Flying Objects. In: 2018 XIII International Scientific Conference - New Trends in Aviation Development (NTAD). pp. 46–49 (2018). - doi:10.1109/NTAD.2018.8551685
Herrejon, R., Kagami, S., Hashimoto, K.: Online 3-D trajectory estimation of a flying object from a monocular image sequence. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 2496–2501 (2009). - doi:10.1109/IROS.2009.5353936
Hossain, S., Lee, D.: Deep Learning-Based Real-Time Multiple-Object Detection and Tracking from Aerial Imagery via a Flying Robot with GPU-Based Embedded Devices. Sensors. 19, 15, (2019). - doi:10.3390/s19153371
Kotianová, N.: Relatívna navigácia v komunikačnej sieti letectva. Dizertačná práca. LF TUKE (2016).
Kotianová, N., Vaispacher, T., Draxler, D.: Selected aspects of modeling of movements of flying objects. In: Majernik, M., Daneshjo, N., and Bosák, M. (eds.) Proceedings of the Production Management and Engineering Sciences. pp. 431–434 , High Tatras Mountains, Slovak Republic (2015). - doi:10.1201/b19259
Ma, Z., Wang, Y., Yang, Y., Wang, Z., Tang, L., Ackland, S.: Reinforcement Learning-Based Satellite Attitude Stabilization Method for Non-Cooperative Target Capturing. Sensors. 18, 12, (2018). - doi:10.3390/s18124331
Oda, K., Tazuneki, S., Yoshida, T.: The flying object for an open distributed environment. In: Proceedings 15th International Conference on Information Networking. pp. 87–92 (2001). - doi:10.1109/ICOIN.2001.905334
Citation note:
Džunda M.: Model of the Motion of a Navigation Object in a Geocentric Coordinate System. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 15, No. 4, doi:10.12716/1001.15.04.10, pp. 791-794, 2021
Authors in other databases:

Other publications of authors:

M. Džunda, V. Humenanský, D. Draxler, Z. Cséfalvay, P. Bajusz

File downloaded 180 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony