Journal is indexed in following databases:



2024 Journal Impact Factor - 0.6
2024 CiteScore - 1.9



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
Lifetime Corrosion Loss of Bulk Carriers
1 University of Belgrade, Belgrade, Serbia
2 University of Donja Gorica, Podgorica, Montenegro
3 University of Montenegro, Kotor, Montenegro
ABSTRACT: This paper analyzes the total steel replacement due to corrosion degradation in four Handymax-class bulk carriers, based on corrosion measurements recorded throughout their operational lifespan. Each ship was divided into 11 lightship mass subgroups, enabling detailed examination of cumulative lifetime corrosion losses for both entire ships and individual subgroups. Utilizing similar ship data obtained from the shipyard, the study also provides estimations of the total steel weights of each of lightship subgroups. The findings offer valuable insights into the overall aging effects on ship structures, crucial for maintenance planning, structural integrity assessments, and recycling, especially from the perspective of sustainable shipping. Additionally, the estimated weights of lightship subgroups can serve as reference data for preliminary ship design, aiding in the estimation of lightship weights and potential steel loss due to corrosion.
REFERENCES
Ivošević Š., 2012. PhD Thesis, University of Montenegro, Maritime Faculty Kotor, Kotor, Montenegro.
Ivošević Š., Meštrović R., Kovač N., 2019. Probabilistic estimates of corrosion rate of fuel tank structures of aging bulk carriers, International Journal of Naval Architecture and Ocean Engineering, 11(1): 165-177. - doi:10.1016/j.ijnaoe.2018.03.003
Viner A.C., Tozer D.R, 1985. Influence of corrosion on ship structural performance, Hull New Construction Division No. 85/29, Lloyd’s Register of Shipping.
Paik J.K., Thayamballi A.K., 2002. Ultimate strength of aging ships, Journal of Engineering for the Maritime Environment, 1(1): 57-77. - doi:10.1243/147509002320382149
Pollard R.R., 1991. Evaluation of corrosion damage in crude and product carriers, Report No. SMP-I, Department of Naval Architecture & Offshore Engineering, University of California, Berkeley.
Yamamoto N., Ikegami K., 1996. A study on the degradation of coating and corrosion of ship’s hull based on the probabilistic approach, In: Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium (OMAE’96), 2: 159–166.
Barbulescu A., Dumitriu C.S., 2023. Fractal Characterization of Brass Corrosion in Cavitation Field in Seawater, Sustainability, 15. - doi:10.3390/su15043816
Paik J.K., Kim S.K., Lee S.K., 1998. A probabilistic corrosion rate estimation model for longitudinal strength members of bulk carriers, Ocean Engineering, 25(10): 837–860. - doi:10.1016/S0029-8018(97)10009-9
Zriouel W., Bentis A., Majid S., Hammouti B., Gmouh S., Umoren P.S., Umoren S.A., 2023. The Blue Tansy Essential Oil–Petra/Osiris/Molinspiration (POM) Analyses and Prediction of Its Corrosion Inhibition Performance Based on Chemical Composition, Sustainability, 15. - doi:10.3390/su151914274
Rodkina А., Ivanova O., Kramar V., Dushko V., Zhilenkov A., Chernyi S., Zinchenko A., 2022. Simulation and selection of a protection types in the design stage of ships and offshore structures, Brodogradnja, 73(2): 59-77.
Ohyagi M., 1987. Statistical Survey on Wear of Ships ́ Structural Members, Nippon Kaiji Kyokai, Technical Bulletin, 5.
Paik J.F., Brennan F., Carlsen C.A., Daley C., Garbatov Y., Ivanov L., Rizzo C., Simonsen B.C, Yamamoto N., Zhuang H. Z., 2006. Report of Committee V.6 Condition Assessment of Aging Ships, 16th International Ship and Offshore Structures Congress, 20-25 August 2006, Southampton, UK.
Roberts S.E., Marlow P.B., 2002. Casualties in dry bulk shipping (1963–1996), Marine Policy, 26: 437–450. - doi:10.1016/S0308-597X(02)00024-6
IMO, 2007. Bulk carrier casualty report, IMO, MSC 83/INF.6, 3 July 2007.
Ivošević Š., Kovač N., Momčilović N., Vukelić G, 2021. Analysis of corrosion depth percentage on the inner bottom plates of aging bulk carriers with an aim to optimize corrosion margin, Brodogradnja, 72(3). - doi:10.21278/brod72306
Ivošević Š., Kovač N., Momčilović N., Vukelić G, 2022. Evaluation of the Corrosion Depth of Double Bottom Longitudinal Girder on Aging Bulk Carriers, Journal of Marine Science and Engineering, 10(10). - doi:10.3390/jmse10101425
Kovač N., Ivošević Š., Momčilović N., 2024. Corrosion-induced thickness diminution of an ageing bulk carrier, Brodogradnja, 75. - doi:10.21278/brod75404
Soares C.G., Garbatov Y., 1999. Reliability of maintained, corrosion protected plates subjected to non–linear corrosion and compressive loads. Marine Structures, 12(6): 425–445. - doi:10.1016/S0951-8339(99)00028-3
Yamamoto N., Kumano A., Matoba M., 1994. Effect of corrosion and its protection on hull strength (2nd Report), Journal of the Society of Naval Architects of Japan, 176: 281-289. - doi:10.2534/jjasnaoe1968.1994.176_281
Paik J.K., Lee J.M., Park Y.I., Hwang J.S., Kim C.W., 2003. Time–variant ultimate longitudinal strength of corroded bulk carriers. Marine Structures, 16: 567–600. - doi:10.1016/j.marstruc.2004.01.003
Melchers R.E., 1999. Corrosion uncertainty modelling for steel structures. Journal of Constructional Steel Research, 52: 3–19. - doi:10.1016/S0143-974X(99)00010-3
Melchers R.E., 2003. Probabilistic Model for Marine Corrosion of Steel for Structural Reliability Assessment, Journal of Structural Engineering, 129(11): 1484–1493. - doi:10.1061/(ASCE)0733-9445(2003)129:11(1484)
Momčilović N., Ilić N., Kalajdžić M., Ivošević Š., Petrović A., 2023. Pitting and uniform corrosion effects on ultimate strength of a bulk carrier, Procedia Structural Integrity, 48. - doi:10.1016/j.prostr.2023.07.104
Momčilović N., Ilić N., Kalajdžić M., Ivošević Š, Petrović A., 2024. Effect of Corrosion-Induced Structural Degradation on the Ultimate Strength of a High-Tensile-Steel Ship Hull, Journal of Marine Science and Engineering, 12. - doi:10.3390/jmse12050745
Inal O. B., 2024. Decarbonization of shipping: Hydrogen and fuel cells legislation in the maritime industry, Brodogradnja, 75. - doi:10.21278/brod75205
Prados J. M., Fernandez I. A., Gomez M. R., Parga M. N., 2024. The decarbonisation of the maritime sector: Horizon 2050, Brodogradnja, 75. - doi:10.21278/brod75202
Grlj C. G., Degiuli N., Martić I., 2024. Experimental and numerical assessment of the effect of speed and loading conditions on the nominal wake of a containership, Brodogradnja, 75. - doi:10.21278/brod75405
IMO, 2018. MEPC. Resolution MEPC.308(73) - Guidelines on the Method of Calculation of the attained Energy Efficiency Design Index (EEDI) for new ships: IMO, 2018/10/26.
IMO, 2012. ANNEX 4 - Resolution MEPC.210(63) - Adopted on 2 March 2012 - 2012 Guidelines for safe and environmentally sound ship recycling, International Maritime Organization, London, UK.
IMO, 2017. Linkages between IMO's Technical Assistance Work and the 2030 Agenda for Sustainable Development, London, UK.
Frančić V., Hasanspahić N., Mandušić M, Strabić M., 2023. Estimation of Tanker Ships’ Lightship Displacement Using Multiple Linear Regression and XGBoost Machine Learning, Journal of Marine Science and Engineering, 11. - doi:10.3390/jmse11050961
Aasen R., Bjorhovde S., 2010. Early stage weight and cog estimation using parametric formulas and regression on historical data, 69 Annual conference of Society of Allied Weight Engineers, Virginia, USA.
Slapničar V., Zadro K, Ložar V., Ćatipović I, 2021. The lightship mass calculation model of a merchant ship by empirical methods, Pedagogika – Pedagogy, 93. - doi:10.53656/ped21-6s.06lig
Watson D.G.M., 1998. Practical Ship Design, Oxford, Elsevier Science Ltd.
Schneekluth H., Bertram V., 1998. Ship Design for Efficiency and Economy. 2nd edition. Oxford: Butterworth-Heinemann.
Papanikolaou A., 2014. Ship Design - Methodologies of Ship Design, Springer. - doi:10.1007/978-94-017-8751-2
Knapp S., Bijwaard G., Heij C., 2011. Estimated incident cost savings in shipping due to inspections. Accident Analysis and Prevention, 43: 1532–1539. - doi:10.1016/j.aap.2011.03.005
Heij C., Knapp S., 2019. Shipping inspections, detentions, and incidents: an empirical analysis of risk dimensions, Maritime Policy & Management, 46(7): 866–883. - doi:10.1080/03088839.2019.1647362
Poggi L., Gaggero T., Gaiotti M., Ravina E., Rizzo C., 2020. Recent developments in remote inspections of ships structures, International Journal of Naval Architect and Ocean Engineering, 12: 881–891. - doi:10.1016/j.ijnaoe.2020.09.001
BV, 2025. Rules for the classification of steel ships, Paris, France.
LR, 2024. Rules and regulations for the classification of ships, London, UK.
Jurczak W., Jurczak K., 2016. Possibility of corrosion monitoring resistance of austenitic steel for ship construction. Journal of KONES Powertrain and Transport, Vol. 23, No. 1. - doi:10.5604/12314005.1213542
Citation note:
Momčilović N., Kovač N., Ivošević S.: Lifetime Corrosion Loss of Bulk Carriers. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 19, No. 1, doi:10.12716/1001.19.01.28, pp. 243-249, 2025
Authors in other databases:
Nikola Momčilović:
Nataša Kovač:

Other publications of authors:


File downloaded 50 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony