Journal is indexed in following databases:



2024 Journal Impact Factor - 0.6
2024 CiteScore - 1.9



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
LLM-based Maritime Training Feedback System: Implementing RAG-Enhanced Assessment Analysis with STCW Compliance
1 University of Tromsø the Arctic University of Norway, Tromsø, Norway
ABSTRACT: This paper presents the implementation and evaluation of a Retrieval-Augmented Generation (RAG) system designed to provide automatic STCW- compliant feedback on maritime assessment questions. Building on preliminary findings from ongoing research into technological proficiency [1] (β=0.457) and institutional readiness [2] (β=0.341), this implementation addresses a critical gap: the need for automated feedback systems that maintain regulatory alignment while reducing instructor workload. The system utilizes the Mistral-7B large language model optimized with QLoRA for efficient local deployment, combined with a RAG architecture to ensure contextually relevant feedback. Evaluation results demonstrate the system’s ability to generate accurate feedback with response times under 15 seconds and STCW concept coverage of 85%, addressing key implementation barriers identified in our previous studies. The paper discusses how this implementation addresses technological proficiency barriers (β=0.457, p<0.001) and enhances perceived usefulness through automated, standards-compliant feedback that supports both individual competency development and institutional readiness.
REFERENCES
S. Baradziej, T. E. Kim, and L. I. Magnussen. “(under review) Technological proficiency and adaptive learning technologies in maritime training: A PLS-SEM analysis”. In: Maritime Policy Management (2025).
S. Baradziej, T. E. Kim, and L. I. Magnussen. “(under review) Institutional Readiness for Adaptive Learning Technologies in Maritime Education”. In: WMU Journal of Maritime Affairs (2025).
International Maritime Organization. International Convention on Standards of Training, Certification and Watchkeeping for Seafarers (STCW). International Maritime Organization, 2011.
Z. Qi, R. Xu, Z. Guo, C. Wang, H. Zhang, and W. Xu. “Long2RAG: Evaluating Long-Context Long-Form Retrieval-Augmented Generation with Key Point Recall”. In: Findings of the Association for Computational Linguistics: EMNLP 2024 (2024), pp. 4852–4872. - doi:10.18653/v1/2024.findings-emnlp.279
A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. Le Scao, T. Lavril, T. Wang, T. Lacroix, and W. El Sayed. “Mistral 7B”. In: arXiv preprint arXiv:2310.06825 (2023).
T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. “QLoRA: Efficient finetuning of quantized LLMs”. In: Advances in Neural Information Processing Systems. Vol. 36. 2023.
E. Kasneci, K. Sessler, S. Ku¨chemann, M. Bannert, D. Dementieva, F. Fischer, U. Gasser, G. Groh, S. Gu¨nnemann, E. Hu¨llermeier, et al. “ChatGPT for good? On opportunities and challenges of large language models for education”. In: Learning and Individual Differences 103 (2023), p. 102274. - doi:10.1016/j.lindif.2023.102274
T. Y. Kung, P. Chen, G. Cheng, T. Sedoc, and C. Callison-Burch. “Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models”. In: PLOS Digital Health 2.2 (2023), e0000198. - doi:10.1371/journal.pdig.0000198
C.-H. Chiang and H.-y. Lee. “Can Large Language Models Be an Alternative to Human Evaluation?” In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. 2023, pp. 15607–15631. - doi:10.18653/v1/2023.acl-long.870
Q. Collaborative. “A framework for human evaluation of large language models in healthcare derived from literature review”. In: NPJ Digital Medicine 7.1 (2024), pp. 1–12. doi: 10.1038/s41746-024-01086-9. - doi:10.1038/s41746-024-01086-9
P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Ku¨ttler, M. Lewis, W.-t. Yih, T. Rockt¨aschel, S. Riedel, and D. Kiela. “Retrieval-augmented generation for knowledge-intensive NLP tasks”. In: Advances in Neural Information Processing Systems. Vol. 33. 2020, pp. 9459–9774.
T. Zhang, S. G. Patil, et al. “RAFT: Adapting Language Model to Domain Specific RAG”. In: (2024).
E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. “LoRA: Low-rank adaptation of large language models”. In: International Conference on Learning Representations. 2022.
G. Emad and W. M. Roth. “Contradictions in the practices of training for and assessment of competency: A case study from the maritime domain”. In: Education + Training 50.3 (2008), pp. 260–272. - doi:10.1108/00400910810874026
C. Sellberg. “Simulators in bridge operations training and assessment: a systematic review and qualitative synthesis”. In: WMU Journal of Maritime Affairs 16.2 (2017), pp. 247–263. - doi:10.1007/s13437-016-0114-8
F. Davis. “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology”. In: MIS Quarterly (1989), pp. 319–340. - doi:10.2307/249008
A. Hevner, A. R, S. March, S. T, Park, J. Park, Ram, and Sudha. “Design Science in Information Systems Research”. In: Management Information Systems Quarterly 28 (Mar. 2004), pp. 75–. - doi:10.2307/25148625
J. Johnson, M. Douze, and H. J´egou. “Billion-scale similarity search with GPUs”. In: IEEE Transactions on Big Data 7.3 (2021), pp. 535–547. - doi:10.1109/TBDATA.2019.2921572
Citation note:
Baradziej S.: LLM-based Maritime Training Feedback System: Implementing RAG-Enhanced Assessment Analysis with STCW Compliance. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 19, No. 3, doi:10.12716/1001.19.03.16, pp. 831-838, 2025
Authors in other databases:

File downloaded 3 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony