Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2024 Journal Impact Factor - 0.6
2024 CiteScore - 1.9
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
Green Voyage Planning: A Literature Survey on the Role of Sustainable Technologies and Strategies in Maritime Operations
1 University of Genoa, Genoa, Italy
ABSTRACT: The rapid transition of the maritime sector toward emission-reduction goals set by international regulators leads to increasing pressure on the industry. Within this context, the present study aims to explore the potential impact of green technologies and strategies (GT&S) on voyage planning, a core process governed by IMO provisions, central to ensuring safe and sustainable navigation. The analysis highlighted current research gaps and proposed insights for future studies, with the aim of supporting the ongoing effort toward maritime decarbonization. In order to explore how GT&S may influence voyage planning, a targeted literature survey has been conducted. The selected contributions were grouped into six categories reflecting current technological and operational trends. Then, their potential impact on the components of voyage planning was assessed from a qualitative perspective. The survey suggests that all components are likely to be affected, introducing challenges which have been explored. The fact that most scholarly efforts appear to be primarily directed toward GT&S enabling short and medium-term sustainability reveals future research opportunities that cannot overlook the specificities of the shipping segment examined. The human element, in particular the role of masters and relevant stakeholders, also emerges as pivotal in managing this transition, supporting the need for further research focused on onboard operators.
KEYWORDS: Environment Protection, MARPOL Annex VI, Greenhouse Gas Emissions, Emission Control Areas (ECA), IMO GHG Strategy, Carbon Neutrality, Market-Based Measures (ETS), Decarbonization of Shipping
REFERENCES
Atilhan S., Park S., El-Halwagi M.M., Atilhan M.; Moore M., Nielsen R.B. Green hydrogen as an alternative fuel for the shipping industry. Current Opinion in Chemical Engineering 2021, 31:100668. - doi:10.1016/j.coche.2020.100668
Babicz J., (2015). Wartsila encyclopedia of ship technology, second edition. Wartsila.
Bengue A.A., Alavi-Borazjani S.A., Chkoniya V., Cacho J.L.; Fiore M. Prioritizing Criteria for Establishing a Green Shipping Corridor Between the Ports of Sines and Luanda Using Fuzzy AHP. Sustainability 2024, 16, 9563. - doi:10.3390/su16219563
Borén C.; Castells-Sanabra M.; Grifoll M. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment. Proc IMechE Part M: J Engineering for the Maritime Environment 236(4).
Chen A., Chen W., Zheng J. Arctic Route Planning and Navigation Strategy: The Perspective of Ship Fuel Costs and Carbon Emissions. J. Mar. Sci. Eng. 2023, 11, 1308. - doi:10.3390/jmse11071308
Chen S.-Y., Kern S., Li X.-Q., Hui F.-M., Ye Y.-F., Cheng X. Navigability of the Northern Sea Route for Arc7 ice-class vessels during winter and spring sea-ice conditions. Advances in Climate Change Research 13 (2022) 676e687. - doi:10.1016/j.accre.2022.09.005
Cheng L., Xu L., Bai X. Cargo selection, route planning, and speed optimization in tramp shipping under carbon intensity indicator (CII) regulations. Transportation Research Part E 194 (2025) 103948. - doi:10.1016/j.tre.2024.103948
Christensen M., Georgati M., Arsanjani J.J. A risk-based approach for determining the future potential of commercial shipping in the Arctic. Journal of Marine Engineering & Technology 2022, VOL. 21, NO. 2, 82–99. - doi:10.1080/20464177.2019.1672419
Dai L., Jing D., Hu H., Wang Z. An environmental and techno-economic analysis of transporting LNG via Arctic route. Transportation Research Part A 146 (2021) 56–71. - doi:10.1016/j.tra.2021.02.005
Di Lieto A., (2015). Bridge Resource Management: From the Costa Concordia to Navigation in the Digital Age. Part II and III. Hydeas Pty Ltd. ISBN: 978-0994267207.
Ding W., Wang Y., Dai L., Hu H. Does a carbon tax affect the feasibility of Arctic shipping? Transportation Research Part D 80 (2020) 102257. - doi:10.1016/j.trd.2020.102257
DNV (2023). Maritime Forecast to 2050. A deep dive into shipping’s decarbonization journey. Energy transition outlook 2023.
Du W., Li Y., Shi J., Sun B., Wang C., Zhu B. Applying an improved particle swarm optimization algorithm to ship energy saving. Energy 263 (2023) 126080. - doi:10.1016/j.energy.2022.126080
Fan A., Li Y., Liu H., Yang L., Tian Z., Li Y., Vladimir N. Development trend and hotspot analysis of ship energy management. Journal of Cleaner Production 389 (2023) 135899. - doi:10.1016/j.jclepro.2023.135899
Gao J., Chi M., Hu Z. Energy Consumption Optimization of Inland Sea Ships Based on Operation Data and Ensemble Learning. Mathematical Problems in Engineering Volume 2022. - doi:10.1155/2022/9231782
Gao J., Lan H., Zhang X., Iu H.H.C., Hong Y.-Y., Yin H. A coordinated generation and voyage planning optimization scheme for all-electric ships under emission policy. Electrical Power and Energy Systems 156 (2024) 109698. - doi:10.1016/j.ijepes.2023.109698
Gao T., Tian J., Liu C., Huang C., Wu H.; Yuan Z. A model for speed and fuel refueling strategy of methanol dual-fuel liners with emission control areas. Transport Policy 161 (2025) 1–16. - doi:10.1016/j.tranpol.2024.11.015
Ghorbani M., Slaets P., Lacey J. Sensor-based modelling of suction sails to integrate into a numerical simulation tool for a wind-assisted vessel and its application to green shipping. Ocean Engineering 311 (2024) 118937. - doi:10.1016/j.oceaneng.2024.118937
Gospić I., Martić I., Degiuli N., Farkas A. Energetic and Ecological Effects of the Slow Steaming Application and Gasification of Container Ships. J. Mar. Sci. Eng. 2022, 10, 703. - doi:10.3390/jmse10050703
Grandcolas S., (2022). A Metaheuristic Algorithm for Ship Weather Routing. Operations Research Forum. - doi:10.1007/s43069-022-00140-0
Grifoll M., Borén C., Castells-Sanabra M. A comprehensive ship weather routing system using CMEMS products and A* algorithm. Ocean Engineering 255 (2022) 111427. - doi:10.1016/j.oceaneng.2022.111427
Guo Y., Wang Y., Chen Y., Wu L., Mao W. Learning-based Pareto-optimum routing of ships incorporating uncertain meteorological and oceanographic forecasts. Transportation Research Part E 192 (2024) 103786. - doi:10.1016/j.tre.2024.103786
Guzelbulut C., Badalotti T., Fujita Y., Sugimoto T., Suzuki K. Artificial Neural Network-Based Route Optimization of a Wind-Assisted Ship. J. Mar. Sci. Eng. 2024, 12, 1645. - doi:10.3390/jmse12091645
Havre H.F., Lien U., Ness M.M., Fagerholt K., Rødseth K.L. Network design with route planning for battery electric high-speed passenger vessel services. European Journal of Operational Research 315 (2024) 102–119. - doi:10.1016/j.ejor.2023.11.015
He P., Jin J.G., Pan W., Chen J. Route, speed, and bunkering optimization for LNG-fueled tramp ship with alternative bunkering ports. Ocean Engineering 305 (2024) 117957. - doi:10.1016/j.oceaneng.2024.117957
Hein K., Xu Y., Wilson G., Gupta A.K. Coordinated Optimal Voyage Planning and Energy Management of All-Electric Ship with Hybrid Energy Storage System. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 3, MAY 2021. - doi:10.1109/TPWRS.2020.3029331
Hwang J.H., Kang D.W. Emission Control Routes in Liner Shipping between Korea and Japan. Mar. Sci. Eng. 2023, 11, 2250. - doi:10.3390/jmse11122250
ICS (2022). Bridge Procedures Guide, sixth edition. Chapter 3. International Chamber of Shipping. ISBN: 978-1-913997-07-6.
IMO (1999). Guidelines for voyage planning. Resolution A.893(21).
IMO (2007). Adoption of the revised performance standards for integrated navigation systems (INS). Resolution MSC.252(83).
IMO (2023). 2023 IMO strategy on reduction of GHG emissions from ships. Resolution MEPC.377(80).
Jesus B., Ferreira I.A., Carreira A., Ove Erikstad S., Godina R. Economic framework for green shipping corridors: Evaluating cost-effective transition from fossil fuels towards hydrogen. International Journal of Hydrogen Energy 83 (2024) 1429–1447. - doi:10.1016/j.ijhydene.2024.08.147
Jovic M., Tijan E., Brcic D., Pucihar A. Digitalization in Maritime Transport and Seaports: Bibliometric, Content and Thematic Analysis. J. Mar. Sci. Eng. 2022, 10, 486. - doi:10.3390/jmse10040486
Karountzos O., Kagkelis G., Kepaptsoglou K. A Decision Support GIS Framework for Establishing Zero-Emission Maritime Networks: The Case of the Greek Coastal Shipping Network. Journal of Geovisualization and Spatial Analysis (2023) 7:16. - doi:10.1007/s41651-023-00145-1
Kavirathna C.A., Shibasaki R., Ding W., Otsuka N. Feasibility of the Northern Sea route with the effect of emission control measures. Transportation Research Part D 123 (2023) 103896. - doi:10.1016/j.trd.2023.103896
Kuhlemann S., Tierney K. A genetic algorithm for finding realistic sea routes considering the weather. Journal of Heuristics (2020) 26:801–825. - doi:10.1007/s10732-020-09449-7
Law, L.C., Foscoli, B., Mastorakos, E., Evans, S. A Comparison of Alternative Fuels for Shipping in Terms of Lifecycle Energy and Cost. Energies 2021, 14, 8502. - doi:10.3390/en14248502
Li X., Sun B., Guo C., Du W., Li Y. Speed optimization of a container ship on a given route considering voluntary speed loss and emissions. Applied Ocean Research 94 (2020) 101995. - doi:10.1016/j.apor.2019.101995
Li X., Sun B., Jin J., Ding J. Speed Optimization of Container Ship Considering Route Segmentation and Weather Data Loading: Turning Point-Time Segmentation Method. J. Mar. Sci. Eng. 2022, 10, 1835. - doi:10.3390/jmse10121835
Li X., Lynch A.H. New insights into projected Arctic sea road: operational risks, economic values, and policy implications. Climatic Change (2023) 176:30. - doi:10.1007/s10584-023-03505-4
Li Z., Wang K., Hua Y., Liu X., Ma R., Wang Z., Huang L. GA-LSTM and NSGA-III based collaborative optimization of ship energy efficiency for low-carbon shipping. Ocean Engineering 312 (2024) 119190. - doi:10.1016/j.oceaneng.2024.119190
Ma D., Zhou S., Han Y., Ma W., Huang H. Multi-objective ship weather routing method based on the improved NSGA-III algorithm. Journal of Industrial Information Integration 38 (2024) 100570. - doi:10.1016/j.jii.2024.100570
Ma W., Ma D., Ma Y., Zhang J., Wang D. Green maritime: a routing and speed multi-objective optimization strategy. Journal of Cleaner Production 305 (2021) 127179. - doi:10.1016/j.jclepro.2021.127179
Mannarini G., Salinas M.L., Carelli L., Petacco N., Orović J. VISIR-2: Ship weather routing in Python. Geosci. Model Dev., 17, 4355–4382, 2024. - doi:10.5194/gmd-17-4355-2024
Mason J., Larkin A., Bullock S., van der Kolk N., Broderick J.F., (2023a). Quantifying voyage optimisation with wind propulsion for short-term CO2 mitigation in shipping. Ocean Engineering 289 (2023) 116065 - doi:10.1016/j.oceaneng.2023.116065
Mason J., Larkin A., Gallego-Schmid A., (2023b). Mitigating stochastic uncertainty from weather routing for ships with wind propulsion. Ocean Engineering 281 (2023) 114674 - doi:10.1016/j.oceaneng.2023.114674
Nzualo T.D.N.M., de Oliveira C.E.F., Pérez T.O.A., González-Gorbeña E., Rosman P.C.C., Qassim R.Y.. Ship speed optimisation in green approach to tidal ports. Applied Ocean Research 115 (2021) 102845. - doi:10.1016/j.apor.2021.102845
Perna A., Jannelli E., Di Micco S., Romano F., Minutillo M. Designing, sizing and economic feasibility of a green hydrogen supply chain for maritime transportation. Energy Conversion and Management 278 (2023) 116702. - doi:10.1016/j.enconman.2023.116702
Pfeifer A., Prebeg P., Duić N. Challenges and opportunities of zero emission shipping in smart islands: A study of zero emission ferry lines. eTransportation 3 (2020) 100048. - doi:10.1016/j.etran.2020.100048
Poulsen R.T., Sampson H. A swift turnaround? Abating shipping greenhouse gas emissions via port call optimization. Transportation Research Part D 86 (2020) 102460. - doi:10.1016/j.trd.2020.102460
Ryan C., Huang L., Li Z., Ringsberg J.W., Thomas G. An Arctic ship performance model for sea routes in ice-infested waters. Applied Ocean Research 117 (2021) 102950. - doi:10.1016/j.apor.2021.102950
Shukla A., (2017). Literature review: an oblivious yet grounding task of research. Management Insight 13(1) 7 – 15.
Song Z., Zhang J., Tian W., Guedes Soares C. A multi-objective ship voyage optimisation method within sulfur emission control zones. Ocean Engineering 319 (2025) 120192. - doi:10.1016/j.oceaneng.2024.120192
Stopford M., (2008). Maritime Economics, third edition. Routledge, Taylor & Francis Group. - doi:10.4324/9780203891742
Sun W., Tang S., Liu X., Zhou S., Wei J. An Improved Ship Weather Routing Framework for CII Reduction Accounting for Wind-Assisted Rotors. J. Mar. Sci. Eng. 2022, 10, 1979. - doi:10.3390/jmse10121979
Tillig F., Ringsberg J.W., Psaraftis H.N., Zis T. Reduced environmental impact of marine transport through speed reduction and wind assisted propulsion. Transportation Research Part D 83 (2020) 102380. - doi:10.1016/j.trd.2020.102380
Tsai Y.-M., Lin C.-Y. Effects of the Carbon Intensity Index Rating System on the Development of the Northeast Passage. J. Mar. Sci. Eng. 2023, 11, 1341. - doi:10.3390/jmse11071341
Wang H., Lang X., Mao W. Voyage optimization combining genetic algorithm and dynamic programming for fuel/emissions reduction. Transportation Research Part D 90 (2021) 102670. - doi:10.1016/j.trd.2020.102670
Wang H., Liu Y., Jin Y., Wang S. Optimal Sailing Speeds and Time Windows in Inland Water Transportation Operations Management: Mathematical Models and Applications. Mathematics 2023, 11, 4747. - doi:10.3390/math11234747
Wang K., Li J., Huang L., Ma R., Jiang X., Yuan Y., Mwero N.A., Negenborn R.R., Sun P., Yan X. A novel method for joint optimization of the sailing route and speed considering multiple environmental factors for more energy efficient shipping. Ocean Engineering 216 (2020) 107591. - doi:10.1016/j.oceaneng.2020.107591
Wang K., Xu H., Li J., Huang L., Ma R., Jiang X., Yuan Y., Mwero N.A., Sun P., Negenborn R.R., Yan X. A novel dynamical collaborative optimization method of ship energy consumption based on a spatial and temporal distribution analysis of voyage data. Applied Ocean Research 112 (2021) 102657. - doi:10.1016/j.apor.2021.102657
Wang W., Liu Y., Zhen L., Wang H. How to Deploy Electric Ships for Green Shipping. J. Mar. Sci. Eng. 2022, 10, 1611. - doi:10.3390/jmse10111611
Wang Z., Silberman J.A., Corbett J.J., (2021). Container vessels diversion pattern to trans-Arctic shipping routes and GHG emission abatement potential. Maritime Policy & Management, 48:4, 543-562. - doi:10.1080/03088839.2020.1795288
Wang Z., Chen L., Wang B.; Huang L., Wang K., Ma R. Integrated optimization of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors. Energy 282 (2023) 128795. - doi:10.1016/j.energy.2023.128795
Xie X., Sun B., Li X., Zhao Y., Chen Y. Joint optimization of ship speed and trim based on machine learning method under consideration of load. Ocean Engineering 287 (2023) 11591 - doi:10.1016/j.oceaneng.2023.115917
Xing H., Spence S., Chen H. A comprehensive review on countermeasures for CO2 emissions from ships. Renewable and Sustainable Energy Reviews 134 (2020) 110222. - doi:10.1016/j.rser.2020.110222
Yang L., Chen G., Zhao J., Rytter N.G.M. Ship speed optimization considering ocean currents to enhance environmental sustainability in maritime shipping. Sustainability 2020, 12, 3649. - doi:10.3390/su12093649
Yang Z., Qu W., Zhuo J. Optimization of Energy Consumption in Ship Propulsion Control under Severe Sea Conditions. J. Mar. Sci. Eng. 2024, 12, 1461. - doi:10.3390/jmse12091461
Zhao S., Zhao S. Ship Global Traveling Path Optimization via a Novel Non-Dominated Sorting Genetic Algorithm. J. Mar. Sci. Eng. 2024, 12, 485. - doi:10.3390/jmse12030485
Zhao W., Wang Y., Zhang Z., Wang H. Multicriteria ship route planning method based on improved particle swarm optimization–genetic algorithm. J. Mar. Sci. Eng. 2021, 9, 357. - doi:10.3390/jmse9040357
Zhao X., Guo Y., Wang Y. Green maritime navigation: A multi-objective voyage optimization approach based on data-driven heuristics and emission awareness. Ocean Engineering 318 (2025) 120138. - doi:10.1016/j.oceaneng.2024.120138
Zhen L., Hu Z., Yan R., Zhuge D., Wang S. Route and speed optimization for liner ships under emission control policies. Transportation Research Part C 110 (2020) 330–345. - doi:10.1016/j.trc.2019.11.004
Zhou P., Zhou Z., Wang Y., Wang H. Ship Weather Routing Based on Hybrid Genetic Algorithm Under Complicated Sea Conditions. J. Ocean Univ. China (Oceanic and Coastal Sea Research) 2023 22: 28-42. - doi:10.1007/s11802-023-5002-1
Citation note:
Fava R., Satta G.: Green Voyage Planning: A Literature Survey on the Role of Sustainable Technologies and Strategies in Maritime Operations. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 19, No. 2, doi:10.12716/1001.19.02.36, pp. 647-657, 2025
Authors in other databases:
Riccardo Fava:
orcid.org/0009-0008-1207-5073
