Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2024 Journal Impact Factor - 0.6
2024 CiteScore - 1.9
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
CFD Analysis of Cobalt-Based Ceramic Coatings for Energy Optimization in the Fishing Naval Industry
1 University of Cantabria, Santander, Spain
2 University of the Basque Country, Portugalete, Spain
2 University of the Basque Country, Portugalete, Spain
ABSTRACT: The rising cost of fossil fuels has created a significant economic challenge for the fishing fleet, whose performance heavily relies on marine diesel consumption. The increase in operational costs due to fuel price surges negatively impacts the profitability of ships, particularly in the fishing industry, where profit margins are often tight. Given this issue, it is crucial to explore solutions that reduce fuel consumption without compromising the operational efficiency of ships. In this context, cobalt-based ceramic coatings, designed and tested in accordance with the ASTM-D3623 procedure, emerge as an innovative and promising alternative. These coatings reduce biofouling adhesion, a buildup of marine organisms on the ship’s hull that increases frictional resistance to movement, consequently leading to higher fuel consumption. By decreasing hydrodynamic resistance, ships require less energy for propulsion, thereby optimizing fuel consumption. Additionally, these coatings provide anticorrosive protection, extending the service life of ships and reducing maintenance costs. The cobalt-based coating has been tested under controlled laboratory conditions and subjected to hydrodynamic shear forces representative of ship navigation at a speed of 10 knots. This article evaluates via CFD the impact of these coatings on the drag resistance of a trawler ship, demonstrating that the increase in hull roughness due to biofouling adhesion on the cobalt-based ceramic coating after one month of navigation results in a 0.02% increase in drag. In contrast, the Intersleek 1001 coating leads to a 6.35% increase in drag under the same conditions.
KEYWORDS: Environment Protection, Maritime Industry, Fuel Efficiency, Sustainable Fisheries, Fishing Fleet Modernization, Greenhouse Gas Emissions, Energy-Efficient Propulsion, Ship Hull Design
REFERENCES
H. Lindstad, R.M. Bright, A.H. Strømman, Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation, Transp Policy (Oxf) 45 (2016) 24–30. - doi:10.1016/j.tranpol.2015.09.002
S. García, A. Trueba, D. Boullosa-Falces, H. Islam, C. Guedes Soares, Predicting ship frictional resistance due to biofouling using Reynolds-averaged Navier-Stokes simulations, Applied Ocean Research 101 (2020). - doi:10.1016/j.apor.2020.102203
L. Trueba-Castaneda, D.S. Sanz, S. Garcia, A. Trueba, Analysis of biofouling economic impact on the Cantabria fishing fleet, in: OCEANS 2021: San Diego – Porto, IEEE, 2021: pp. 1–6. - doi:10.23919/OCEANS44145.2021.9706079
N. Hadžić, I. Gatin, T. Uroić, V. Ložar, Biofouling dynamic and its impact on ship powering and dry-docking, Ocean Engineering 245 (2022) 110522. - doi:10.1016/j.oceaneng.2022.110522
C.-C. Chang, M.-L. Huang, C.-H. Li, Analysis of emission reduction strategies for the use of alternative fuels and natural carbon sinks in international bulk shipping, Energy Conversion and Management: X 24 (2024) 100702. - doi:10.1016/j.ecmx.2024.100702
M. Leer-Andersen, L. Larsson, An experimental/numerical approach for evaluating skin friction on full-scale ships with surface roughness, J Mar Sci Technol 8 (2003) 26–36. - doi:10.1007/s10773-003-0150-y
D.S. Sanz, S. García, A. Trueba, L. Trueba-Castañeda, H. Islam, C. Guedes Soares, D. Boullosa-Falces, Numeric analysis of the biofouling impact on the ship resistance with ceramic coating on the hull, in: Trends in Maritime Technology and Engineering Volume 1, CRC Press, London, 2022: pp. 443–449. - doi:10.1201/9781003320272-49
Y.K. Demirel, O. Turan, A. Incecik, Predicting the effect of biofouling on ship resistance using CFD, Applied Ocean Research 62 (2017) 100–118. - doi:10.1016/j.apor.2016.12.003
S. Song, Y.K. Demirel, M. Atlar, An investigation into the effect of biofouling on the ship hydrodynamic characteristics using CFD, Ocean Engineering 175 (2019) 122–137. - doi:10.1016/j.oceaneng.2019.01.056
D. Owen, Y.K. Demirel, E. Oguz, T. Tezdogan, A. Incecik, Investigating the effect of biofouling on propeller characteristics using CFD, Ocean Engineering 159 (2018) 505–516. - doi:10.1016/j.oceaneng.2018.01.087
N. Speranza, B. Kidd, M.P. Schultz, I.M. Viola, Modelling of hull roughness, Ocean Engineering 174 (2019) 31–42. - doi:10.1016/j.oceaneng.2019.01.033
S. García, D. Boullosa-Falces, D.S. Sanz, A. Trueba, M.A. Gomez-Solaetxe, Artificial-intelligence-model to optimize biocide dosing in seawater-cooled industrial process applications considering environmental, technical, energetic, and economic aspects, Biofouling 40 (2024) 366–376. - doi:10.1080/08927014.2024.2363241
E. Robertson, V. Choudhury, S. Bhushan, D.K. Walters, Validation of OpenFOAM numerical methods and turbulence models for incompressible bluff body flows, Comput Fluids 123 (2015) 122–145. - doi:10.1016/j.compfluid.2015.09.010
A. Trueba, L.M. Vega, S. García, F.M. Otero, E. Madariaga, Mitigation of marine biofouling on tubes of open rack vaporizers using electromagnetic fields, Water Science and Technology 73 (2016) 1221–1229. - doi:10.2166/wst.2015.597
D. Boullosa-Falces, D.S. Sanz, S. Garcia, L. Trueba-Castañeda, A. Trueba, Predicting tubular heat exchanger efficiency reduction caused by marine biofilm adhesion using CFD simulations, Biofouling (2022) 1–11. - doi:10.1080/08927014.2022.2110493
D.S. Sanz, S. García, A. Trueba, H. Islam, C.G. Soares, Prediction of biological development effects on drag forces of ceramic hull coating using Reynolds-averaged Navier–Stokes-based solver, Biofouling (2023) 1–14. - doi:10.1080/08927014.2023.2209020
A. Trueba, S. García, F.M. Otero, L.M. Vega, E. Madariaga, Influence of flow velocity on biofilm growth in a tubular heat exchanger-condenser cooled by seawater, Biofouling 31 (2015). - doi:10.1080/08927014.2015.1070404
D.S. Sanz, S. Garcia, A. Trueba, L.M. Vega, L. Trueba-Castaneda, D. Boullosa-Falces, Application of ceramic coatings to minimize the frictional drag penalty on ships, in: OCEANS 2021: San Diego – Porto, IEEE, 2021: pp. 1–5. - doi:10.23919/OCEANS44145.2021.9706045
D. Boullosa-Falces, S. García, D. Sanz, A. Trueba, M.A. Gomez-Solaetxe, CUSUM chart method for continuous monitoring of antifouling treatment of tubular heat exchangers in open-loop cooling seawater systems, Biofouling 36 (2020) 73–85. - doi:10.1080/08927014.2020.1715954
D. Boullosa-Falces, M.A. Gomez-Solaetxe, Z. Sanchez Varela, S. García, A. Trueba, D. Sanz, Study of the impact of EMF on the reduction of biofouling in heat exchangers, in: Trends in Maritime Technology and Engineering Volume 1, CRC Press, London, 2022: pp. 511–515. - doi:10.1201/9781003320272-57
S. Garcia, A. Trueba, L. Vega, E. Madariaga, Improvement of Electromagnetic Fields treatment for biofouling growth control in tubular heat exchanger-condenser cooled by seawater, in: OCEANS 2017 - Aberdeen, IEEE, 2017: pp. 1–5. - doi:10.1109/OCEANSE.2017.8084576
P. Yi, H. Jia, X. Yang, Y. Fan, S. Xu, J. Li, M. Lv, Y. Chang, Anti-biofouling properties of TiO2 coating with coupled effect of photocatalysis and microstructure, Colloids Surf A Physicochem Eng Asp 656 (2023) 130357. - doi:10.1016/j.colsurfa.2022.130357
T. Cebeci, P. Bradshaw, Momentum Transfer in Boundary Layers, Hemisphere Publishing Corporation, New York, 1977.
G. Kalitzin, G. Medic, G. Iaccarino, P. Durbin, Near-wall behavior of RANS turbulence models and implications for wall functions, J Comput Phys 204 (2005) 265–291. - doi:10.1016/j.jcp.2004.10.018
T. Adams, C. Grant, H. Watson, A Simple Algorithm to Relate Measured Surface Roughness to Equivalent Sand-grain Roughness, International Journal of Mechanical Engineering and Mechatronics (2012). - doi:10.11159/ijmem.2012.008
Citation note:
Sanz D., García S., García J., Boullosa-Falces D., Trueba A.: CFD Analysis of Cobalt-Based Ceramic Coatings for Energy Optimization in the Fishing Naval Industry. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 19, No. 2, doi:10.12716/1001.19.02.27, pp. 553-560, 2025
Authors in other databases:
David Salvador Sanz:
Sergio García:
Javier García:
David Boullosa-Falces:
orcid.org/0000-0002-3242-0283

Alfredo Trueba: