Journal is indexed in following databases:



2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
Application Perspective of Digital Neural Networks in the Context of Marine Technologies
1 Odesa National Maritime University, Odessa, Ukraine
Times cited (SCOPUS): 1
ABSTRACT: This study is focused on the issue of digital neural networks’ implementation in the context of maritime industry. Various algorithms of such networks in the terms of the marine technologies have been reviewed in the current study in order to evaluate the effectiveness of the methodology and to propose a new concept of an artificial neural network’s application in this way. Fire-detection system simulation based on the thermal imagers’ data input had been developed to assess the efficiency of the concept suggested with a multi-layer perceptron (MLP) algorithm integrated into the designed 3d-model.
REFERENCES
Abdelali K, Yousra M, Khalifa M, Mostafa R. Artificial neural network and mathematical modeling of automatic ship berthing, Commun. Math. Biol. Neurosci. 2022; Article ID 113. - doi:10.28919/cmbn/7727
Abramowski T. Application of artificial neural networks to assessment of ship manoeuvrability qualities. Polish Maritime Research. 2008; 15(2) 1521. - doi:10.2478/v10012-007-0059-0
Ahmed Y. A., Hasegawa K. Automatic Ship Berthing using Artificial Neural Network Based on Virtual Window Concept in Wind Condition. IFAC Proceedings Volumes. 2012; 45(24), 286–291. - doi:10.3182/20120912-3-BG-2031.00059
Ahmed Y. A., Hasegawa K. Automatic ship berthing using artificial neural network trained by consistent teaching data using nonlinear pro-gramming method. Engineering Applications of Artificial Intelligence. 2013; 26(10), 2287–2304. - doi:10.1016/j.engappai.2013.08.009
Ahmed Y. A., Hasegawa K. Implementation of Automatic Ship Berthing using Artificial Neural Network for Free Running Experiment. IFAC Proceedings Volumes. 2013; 46(33), 25–30. - doi:10.3182/20130918-4-JP-3022.00036
Ahmed Y. A., Hannan M. A., Siang K. H. Arti-ficial Neural Network controller for automatic ship berthing: challenges and opportunities. Ma-rine Systems & Ocean Technology. 2020; 15(4), 217–242. - doi:10.1007/s40868-020-00089-x
Haykin Simon, “Neural networks and learning machines,” —3rd ed, Rev. ed of: Neural net-works. 2nd ed., 1999. Includes bibliographical references and index. ISBN-13: 978-0-13-147139-9 ISBN-10: 0-13-147139-2
Kanghyeok L., Minwoong C., Seungjun K., Do H. S. Damage detection of catenary mooring line based on recurrent neural networks. Ocean Engineering. 2021; 227, 108898, ISSN 0029-8018. - doi:10.1016/j.oceaneng.2021.108898
Kuo H. C., Chang, H. K. A real-time shipboard fire-detection system based on grey-fuzzy algorithms. Fire Safety Journal. 2003; 38(4), 341–363. - doi:10.1016/S0379-7112(02)00088-7
Li G, Kawan B, Wang H, Zhang H. Neural-network-based modelling and analysis for time series prediction of ship motion. Ship Technolo-gy Research. 2017; 64(1), 3039. - doi:10.1080/09377255.2017.1309786
Minwoong C., Seungjun K., Kanghyeok L., Do H.S. Detection of damaged mooring line based on deep neural networks. Ocean Engineering. 2020; 209, 107522, ISSN 0029-8018. - doi:10.1016/j.oceaneng.2020.107522
Mizuno N., Kuboshima R. Implementation and Evaluation of Non-linear Optimal Feedback Control for Ship’s Automatic Berthing by Re-current Neural Network. IFAC-PapersOnLine. 2019; 52(21), 91–96. - doi:10.1016/j.ifacol.2019.12.289
Nazir A, Mosleh H, Takruri M, Jallad A-H, Alhebsi H. Early Fire Detection: A New Indoor Laboratory Dataset and Data Distribution Anal-ysis. Fire. 2022; 5(1):11. - doi:10.3390/fire5010011
Neumann, T. (2017). Fuzzy routing algorithm in telematics transportation systems. Communications in Computer and Information Science. 715, 494-505 doi:10.1007/978-3-319-66251-0_40 - doi:10.1007/978-3-319-66251-0_40
Qiang L., Bi-Guang H. Artificial Neural Net-work Controller for Automatic Ship Berthing Using Separate Route. Journal of Web Engineer-ing. 2020; - doi:10.13052/jwe1540-9589.19788
Qiang Z., Guibing Z., Xin H., Renming Y. Adaptive neural network auto-berthing control of marine ships. Ocean Engineering. 2019; 177, 40–48. - doi:10.1016/j.oceaneng.2019.02.031
Starnenkovich M. An application of artificial neural networks for autonomous ship navigation through a channel. Vehicle Navigation and In-formation Systems Conference. 1991; - doi:10.1109/VNIS.1991.205794
Xavier K.L.B.L., Nanayakkara V.K. Develop-ment of an Early Fire Detection Technique Us-ing a Passive Infrared Sensor and Deep Neural Networks. Fire Technol. 2022; 58, 3529–3552. - doi:10.1007/s10694-022-01319-x
Xiao Perry, “Practical Java Programming”. Indi-anapolis, IN: John Wiley & Sons, Inc., 2019, ISBN: 978-1-119-56001-2.
Yang C-H, Lin G-C, Wu C-H, Liu Y-H, Wang Y-C, Chen K-C. Deep Learning for Vessel Tra-jectory Prediction Using Clustered AIS Data. Mathematics. 2022; 10(16):2936. - doi:10.3390/math10162936
Zăgan R., Chiţu M. G., Manea E. Ship Manoeu-vrability Prediction Using Neural Networks Analysis. Advanced Materials Research. 2014; 1036, 946–951. - doi:10.4028/www.scientific.net/AMR.1036.946
Zhang Q., Jiang N., Hu Y., Pan D. Design of Course-Keeping Controller for a Ship Based on Backstepping and Neural Networks. Interna-tional Journal of E-Navigation and Maritime Economy. 2017; 7, 34–41. - doi:10.1016/j.enavi.2017.06.004
Citation note:
Konon V., Konon N.: Application Perspective of Digital Neural Networks in the Context of Marine Technologies. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 16, No. 4, doi:10.12716/1001.16.04.16, pp. 743-747, 2022

File downloaded 108 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony