ISSN 2083-6473
ISSN 2083-6481 (electronic version)




Associate Editor
Prof. Tomasz Neumann

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
An Influence of Fouling Gathered on the Heat Transfer Surfaces on the Heat Performance Characteristics of the Ship Steam Systems' Heat Exchangers
ABSTRACT: More than half of the incidents reported to EMSA relate to nautical events such as collision, groundings and contacts. Knowledge of accurate and high-integrity positioning is therefore not only a need for future automated shipping but a base for today’s safe navigation. Examples on accidents include Ever Given in the Suez Canal and HNoMS Helge Ingstad in Norway. A Network-RTK (NRTK) service can be used as an augmentation technique to improve performance of shipborne GNSS receivers for future positioning of manned and unmanned vessels in restricted areas, such as port areas, fairways, and inland water ways. NRTK service providers generate RTK corrections based on the observations of networks of GNSS reference stations which enables the users to determine their position with centimeter accuracy in real-time using a shipborne GNSS receiver. Selection of appropriate communication channels for dissemination of NRTK corrections data is the key to a secure positioning (localization) service. In PrePare-Ships project, the modern maritime communication system VDES (VHF Data Exchange System) is proposed to distribute SWEPOS (NRTK in Sweden) correction data to shipborne positioning modules. VDES is a very reliable technique and it is compatible with most onboard functionalities. In order to minimize the impact on the overall VDES data capacity in a local area, NRTK correction data shall only occupy a single VDES slot with a net capacity of 650 bytes. Update rates may vary but are preferably at 1Hz. However, NRTK correction data size changes instantly, depending on the number of visible GNSS satellites, and the data rate can therefore sometimes reach in excess of 1000 byte/s. In this study, a smart technique is proposed to reduce size of NRTK correction data to instantly adapt with the VDES requirements by choosing a combination of specific signals, satellites or even constellations such that the data rate is not more than 650 byte/s, and at the same time it achieves optimal positioning performance with the accuracy required by the PrePare-Ships project application.
Brahim, F., Augustin, W., Bohnet, M.: Numerical Simulation of the Fouling on Structured Heat Transfer Surfaces (Fouling). Heat Exchanger Fouling and Cleaning: Fundamentals and Applications. 121 (2003).
Brodowicz, K.: Teoria wymienników ciepła i masy. PWN, Warszawa (1982).
Butrymowicz, D., Hajduk, T.: Zagadnienia degradacji termicznej wymienników ciepła. Technika Chłodnicza i Klimatyzacyjna. nr 3, 111–117 (2006).
Butrymowicz, D., Trela, M.: Influence of fouling and inert gases on the performance of regenerative feedwater heaters. Archives of Thermodynamics. Vol. 23, no 1–2, 127–140 (2002).
Chenoweth, J.M.: Final Report of the HTRI/TEMA Joint Committee to Review the Fouling Section of the TEMA Standards. null. 11, 1, 73–107 (1990). - doi:10.1080/01457639008939724
Cunningham, J.: The Effect of Use of Noncondensable Gases on Enhanced Surface Condensers. In: Marto, P.J. and Nunn, R.H. (eds.) Power Condenser Heat Transfer Technology. pp. 353–366 Hemisphere Publishing Corporation, Washington (1981).
Dobosiewicz, J.: Wpływ jakości wody zasilającej i kotłowej na trwałość powierzchni ogrzewalnych generatora. Energetyka. 7, 517–521 (2006).
Förster, M., Bohnet, M.: Modification of molecular interactions at the interface crystal/heat transfer surface to minimize heat exchanger fouling. International Journal of Thermal Sciences. 39, 7, 697–708 (2000). - doi:10.1016/S1290-0729(00)00229-5
Górski, Z., Perepeczko, A.: Okrętowe kotły parowe. Akademia Morska Gdynia, Gdynia (2013).
Hajduk, T.: Research of Deposit Accumulated on Heat Exchange Surfaces in the Light of Thermal Degradation of Heat Exchange Aparatus of Steam Power Plants Part I: Study of Real Sediments. Polish Maritime Research. 25, 1(97), 99–107 (2018). - doi:10.2478/pomr-2018-0012
Karabelas, A.J.: Scale formation in tubular heat exchangers—research priorities. International Journal of Thermal Sciences. 41, 7, 682–692 (2002). - doi:10.1016/S1290-0729(02)01363-7
Knudsen, J.G.: Fouling in Heat Exchangers. In: Hewitt, G.F. (ed.) Handbook of heat exchanger design. p. Begell House Inc., New York (1992).
Kowalski, A., Krzyżanowski, J.: Teoria okrętowych kotłów parowych. Wyższa Szkoła Morska, Gdynia (1993).
Mizielińska, K., Olszak, J.: Parowe źródła ciepła. Wydawnictwo Naukowo Techniczne, Warszawa (2014).
Mwaba, M.G., Rindt, C.C.M., Vorstman, M. a. G., A. A. Steenhoven, V.: Calcium sulfate deposition on a heated plate and removal characteristics. Proceedings of the 4th international conference on heat exchanger fouling : fundamental approaches and technical solutions, Davos, Switzerland, July 8-13, 2001. 57–63 (2001).
Pudlik, W.: Wymiana i wymienniki ciepła. Politechnika Gdańska, Gdańsk (1988).
Rusowicz, A.: Analiza powstających osadów w rurach skraplacza energetycznego. Presented at the XII Sympozjum Wymiany Ciepła i Masy , Kraków (2004).
Stańda, J.: Woda do kotłów parowych i obiegów chłodzących siłowni cieplnych. Wydawnictwo Naukowo Techniczne, Warszawa (1999).
Stewart, J.: Calculus. Rachunek różniczkowy i całkowy funkcji jednej zmiennej. Wydawnictwo Naukowe PWN, Warszawa (2020).
Szargut, J.: Ekologiczne uwarunkowania energetyki. Energetyka. 1, 378–383 (1993).
Taborek, J.: Effects of Fouling and Related Comments on Marine Condenser Design. In: Marto, P.J. and Nunn, R.H. (eds.) Power Condenser Heat Transfer Technology. pp. 425–430 Hemisphere Publishing Corporation, Washington (1981).
Taylor, J.: Wstęp do analizy błędu pomiarowego. Wydawnictwo Naukowe PWN, Warszawa (2011).
Wiśniewski, S., Wiśniewski, T.S.: Wymiana ciepła. Wydawnictwo Naukowo Techniczne, Warszawa (2000).
Citation note:
Hajduk T.: An Influence of Fouling Gathered on the Heat Transfer Surfaces on the Heat Performance Characteristics of the Ship Steam Systems' Heat Exchangers. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 15, No. 1, doi:10.12716/1001.15.01.18, pp. 183-188, 2021

File downloaded 27 times

Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony