Journal is indexed in following databases:



2024 Journal Impact Factor - 0.6
2024 CiteScore - 1.9



HomePage
 




 


 

ISSN 2083-6473
ISSN 2083-6481 (electronic version)
 

 

 

Editor-in-Chief

Associate Editor
Prof. Tomasz Neumann
 

Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
www http://www.transnav.eu
e-mail transnav@umg.edu.pl
A Thematic Review of Port Services and Emission Reduction Strategies Using ATLAS.ti
1 Constanta Maritime University, Constanța, Romania
ABSTRACT: The maritime industry plays a dual role as a critical driver of global trade and a significant contributor to greenhouse gas (GHG) and air pollutant emissions, posing challenges to environmental sustainability. As key nodes in the global supply chain, ports face mounting pressure to adopt greener practices. This study synthesises insights from contemporary scientific research articles, highlighting best practices, successful case studies, and obstacles in implementing emission reduction strategies and environmentally friendly port services worldwide. A two-step mixed-methods approach was utilised, combining a systematic review of literature with qualitative data analysis. The PRISMA methodology guided the selection of 27 peer-reviewed articles from the Web of Science Core Collection, spanning the period from 2015 to 2024. Subsequently, thematic coding and comprehensive analysis were conducted using Computer-Assisted Qualitative Data Analysis Software (CAQDAS) ATLAS.ti, enabling a structured synthesis of findings related to port services and emission reduction strategies. Through this analysis, three critical themes emerged as essential for enhancing environmental sustainability in port operations: innovative technologies for emission reduction, data-driven optimization for port efficiency, and policies and governance for green ports. Drivers such as financial incentives, advanced technologies, and regulatory frameworks were identified, alongside barriers like economic feasibility, technical challenges, and organisational resistance. These themes reveal the interconnected nature of sustainability efforts and the need for collaborative strategies to overcome existing obstacles. By identifying key drivers and challenges, this research offers valuable insights for advancing sustainable practices in port operations. The findings underscore the importance of aligning technological, operational, and policy-driven measures to foster environmental efficiency while mitigating emissions. This study contributes to the growing body of knowledge on sustainable port operations, providing actionable insights for stakeholders and policymakers in the maritime industry to support the transition toward greener and more efficient port practices.
REFERENCES
Abu Bakar, N., Bazmohammadi, N. V., & Guerrero, J. (2023). Electrification of onshore power systems in maritime transportation towards decarbonization of ports: A review of the cold ironing technology. Renewable and Sustainable Energy Reviews, 178(113243). Retrieved from - doi:10.1016/j.rser.2023.113243
Alamoush, A., Olcer, A., & Ballini, F. (2022). Port greenhouse gas emission reduction: Port and public authorities’ implementation schemes. Research in Transportation Business & Management, 43. Retrieved from - doi:10.1016/j.rtbm.2021.100708
Alves de Moura, D., & Goulart de Andrade, D. (2018). Concepts of Green Port Operations - One Kind of Self Diagnisis Method to the Port of Santos - Brazil. Independent Journal of Management & Production, 9(3). doi:10.14807/ijmp.v9i3.733 - doi:10.14807/ijmp.v9i3.733
Ballester, V., Lo-Iacono-Ferreira, V., Artacho-Ramírez, M., & Capuz-Rizo, S. (2020). The Carbon Footprint of Valencia Port: A Case Study of the Port Authority of Valencia (Spain). International Journal of Environmental Research and Public Health.
Bjerkan, K., & Seter, H. (2019). Reviewing tools and technologies for sustainable ports: Does research enable decision making in ports? Transportation Research Part D: Transport and Environment, 72, 243–260. Retrieved from - doi:10.1016/j.trd.2019.05.003
CESI, I. (2024). New Energy Connections for a Sustainable Tomorrow. Energy Journal. Retrieved from https://www.cesi.it/app/uploads/2024/12/EJ-29-News-Energy-Connections.pdf
Chen, J., Huang, T., Xie, X., Lee, P.-W., & Hua, C. (2019). Constructing Governance Framework of a Green and Smart Port. J. Mar. Sci. Eng. - doi:10.3390/jmse7040083
Di Vaio, A., & Varriale, L. (2018). Management Innovation for Environmental Sustainability in Seaports: Managerial Accounting Instruments and Training for Competitive Green Ports beyond the Regulations. Sustainability, 10(783). doi:10.3390/su10030783 - doi:10.3390/su10030783
Dumitru, A., Gregorio, E., Bonnes, M., Bonaiuto, M., Carrus, G., Garcia-Mira, R., & F., M. (2016). Low carbon energy behaviors in the workplace: A qualitative study in Italy and Spain. Energy Research & Social Science, 13, 49-59. doi:doi.org/10.1016/j.erss.2015.12.005 - doi:10.1016/j.erss.2015.12.005
ETS, E. (2024). EU Emissions Trading System. Climate. Retrieved 12 30, 2024, from https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector_en
EU. (2019). European Green Deal. Council of the European Union. Retrieved from https://www.consilium.europa.eu/en/policies/green-deal/
Franchi, L., & Vanelslander, T. (2021). Port Greening: Discrete Choice Analysis Investigation on Environmental Parameters Affecting Container Shipping Companies’ Behaviors. Sustainability, 13(7010). Retrieved from - doi:10.3390/su13137010
Friese, S. (2014). Qualitative Data Analysis with ATLAS.ti. SAGE Publications. doi:https://doi.org/10.4135/9781529799590.n1
Gan, G., Lee, H., Tao, Y., & Tu, C. (2021). Selecting Suitable, Green Port Crane Equipment for International Commercial Ports. Sustainability, 13(6801). Retrieved from - doi:10.3390/su13126801
Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2). doi: - doi:10.1002/cl2.1230
Huang, J., & Duan, X. (2023). A comprehensive review of emission reduction technologies for marine transportation. J. Renew. Sustain. Energy, 15(032702). - doi:10.1063/5.0150010
IMO. (2023). 2023 IMO Strategy on Reduction of GHG Emissions from Ships. Marine Environment. Retrieved from https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx
IPCC, C. (2019). Transport. The Intergovernmental Panel on Climate Change. Retrieved from https://www.ipcc.ch/report/ar6/wg3/chapter/chapter-10/
Kizielewicz, J. (2022). Monitoring Energy Efficiency and Environmental Ship Index by Cruise Seaports in Northern Europe. Energies, 15(4215). Retrieved from - doi:10.3390/en15124215
Kotowska, I., Mankowska, M., & Plucinski, M. (2018). Inland Shipping to Serve the Hinterland: The Challenge for Seaport Authorities. Sustainability, 10(3468). doi:doi:10.3390/su10103468 - doi:10.3390/su10103468
Le, S.-T., & Nguyen, T.-H. (2023). The Development of Green Ports in Emerging Nations: A Case Study of Vietnam. Sustainability, 15(13502). Retrieved from - doi:10.3390/su151813502
Le, T., Nguyen, H., Rudzki, K., Rowiński, L., Bui, V., Truong, T., . . . Pham, N. (2023). Management strategy for seaports aspiring to green logistical goals of IMO: Technology and policy solutions. POLISH MARITIME RESEARCH, 30(118), 165-187. doi:10.2478/pomr-2023-0031 - doi:10.2478/pomr-2023-0031
Lee, H., Park, D., Choo, S., & Pham, T. (2020). Estimation of the Non-Greenhouse Gas Emissions Inventory from Ships in the Port of Incheon. Sustainability, 12. doi:doi:10.3390/su12198231 - doi:10.3390/su12198231
Lee, H., Pham, H., Chen, M., & Choo, S. (2021). Bottom-Up Approach Ship Emission Inventory in Port of Incheon Based on VTS Data. Journal of Advanced Transportation, 2021. Retrieved from - doi:10.1155/2021/5568777
Li, J., Ren, J., Ma, X., & Xiao, G. (2023). Environmental efficiency of ports under the dual carbon goals: Taking China’s Bohai-rim ports as an example. Frontiers in Marine Science. doi:10.3389/fmars.2023.1129659 - doi:10.3389/fmars.2023.1129659
Lin, C.-Y., Dai, G.-L., Wang, S., & Fu, X.-M. (2022). The Evolution of Green Port Research: A Knowledge Mapping Analysis. Sustainability, 14(19). doi: - doi:10.3390/su141911857
Lu, H., & Huang, L. (2021). Optimization of Shore Power Deployment in Green Ports Considering Government Subsidies. Sustainability, 13. Retrieved from - doi:10.3390/su13041640
Méndez Romero, R. (2016). Qualitative data analysis with ATLAS.ti [Book Review]. Qualitative Research in Education, 5(2), 226-228. doi:10.17583.qre.2016.2120 - doi:10.17583/qre.2016.2120
Misra, A. P. (2017). GHG emission accounting and mitigation strategies to reduce the carbon footprint in conventional port activities: A case of the Port of Chennai. Carbon Management, 8(1), 45-56. doi:10.1080/17583004.2016.1275815 - doi:10.1080/17583004.2016.1275815
Misra, A., Tajudeen, S., Venkataramani, G., Ayyasamy, E., & Ramalingam, V. (2017). Role of biodiesel with nanoadditives in port owned trucks and other vehicles for emission reduction. THERMAL SCIENCE, 21(1B), 605-614. doi:10.2298/TSCI160613295M - doi:10.2298/TSCI160613295M
Mocerino, L., Murena, F., Quaranta, F., & Toscano, D. (2024). Port Emissions Assessment: Integrating Emission Measurements and AIS Data for Comprehensive Analysis. Atmosphere, 15(446). Retrieved from - doi:10.3390/atmos15040446
Moshood, T. N., Mahmud, F., Sorooshian, S., & Adeleke, A. (2021). Green and low carbon matters: A systematic review of the past, today, and future on sustainability supply chain management practices among manufacturing industry. Cleaner Engineering and Technology, 4. doi: - doi:10.1016/j.clet.2021.100144
Paulus, T., & Lester, J. (2015). ATLAS.ti for conversation and discourse analysis studies. International Journal of Social Research Methodology, 19(4), 405–428. doi: - doi:10.1080/13645579.2015.1021949
Peng, Y., Wang, W., Liu, K., Li, X., & Tian, Q. (2018). The Impact of the Allocation of Facilities on Reducing Carbon Emissions from a Green Container Terminal Perspective. Sustainability, 10(1813). doi:doi:10.3390/su10061813 - doi:10.3390/su10061813
Perron, P. (2006). Dealing with structural breaks. Palgrave Handbook of Econometrics, 1, 278–352.
Pgs-Log. (2019). China’s Guiding Opinions on Building World-Class Ports. Parisi Grand Smooth. Retrieved from https://pgs-log.com/china-releases-guidelines-to-build-world-class-ports/
Port-Data. (2024). The Future of Digital Port Operations: Trends, Innovations, and Challenges. Retrieved 12 30, 2024, from https://www.port-data.com/post/the-future-of-digital-port-operations-trends-innovations-and-challenges
PortSeattle. (2021). Northwest Ports Clean Air Strategy. Retrieved from https://www.nwseaportalliance.com/environment/clean-air/northwest-ports-clean-air-strategy
Roh, S., Thai, V., & Wong, Y. (2016). Towards Sustainable ASEAN Port Development: Challenges and Opportunities for Vietnamese Ports. The Asian Journal of Shipping and Logistics, 32(2), 107-118. Retrieved from http://dx.doi.org/10.1016/j.ajsl.2016.05.004 - doi:10.1016/j.ajsl.2016.05.004
Silver, C., & Lewins, A. (2014). Using Software in Qualitative Research : A Step-by-Step Guide. Sage Publications. - doi:10.4135/9781473906907
Song, D. (2024). A Literature Review of Seaport Decarbonisation: Solution Measures and Roadmap to Net Zero. Sustainability, 16(4). Retrieved from - doi:10.3390/su16041620
Song, Z., Tang, W., Zhao, R., & Zhang, G. (2022). Implications of government subsidies on shipping companies’ shore power usage strategies in port. Transportation Research Part E: Logistics and Transportation Review, 165. Retrieved from - doi:10.1016/j.tre.2022.102840
Soratto, J., Pires, D., & Friese, S. (2020). Thematic content analysis using ATLAS.ti software: potentialities for researchs in health. Revista Brasileira de Enfermagem, 73. doi: - doi:10.1590/0034-7167-2019-0250
Standard, A., Sabisch, M., Kishan, S., & Fulper, C. (2018). Measurement and Analysis of the Operations of Drayage Trucks in the Houston Area in Terms of Activities and Exhaust Emissions. SAE Int J Commer Veh., 11(2), 77–92. doi:doi:10.4271/02-11-02-0007 - doi:10.4271/02-11-02-0007
Tai, H., & Chang, Y.-H. (2022). Reducing pollutant emissions from vessel maneuvering in port areas. Maritime Economics & Logistics, 24, 651–671. Retrieved from - doi:10.1057/s41278-022-00218-w
Tseng, P., & Ng, M. (2021). Assessment of port environmental protection in Taiwan. Maritime Business Review, 6(2), 2397-3757. doi:10.1108/MABR-04-2020-0022 - doi:10.1108/MABR-04-2020-0022
Tseng, P.-H., & Pilcher, N. (2019). Evaluating the key factors of green port policies in Taiwan through quantitative and qualitative approaches. Transport Policy. Retrieved from - doi:10.1016/j.tranpol.2018.12.014
UNCTAD. (2023). Towards greener shores: The need for an energy transition. Review of Maritime Transport. Retrieved from https://unctad.org/publication/review-maritime-transport-2023
Wan, C., Zhang, D., Yan, X., & Yang, Z. (2017). A novel model for the quantitative evaluation of green port development - A case study of major ports in China. Transportation Research Part D: Transport and Environment. Retrieved from http://researchonline.ljmu.ac.uk/id/eprint/6877/ - doi:10.1016/j.trd.2017.06.021
Wang, B., Liu, Q., Wang, L., Chen, Y., & Wang, J. (2023). A review of the port carbon emission sources and related emission reduction technical measures? Environ. Pollut. 2023, 320, 121000. Environmental Pollution, 320. Retrieved from - doi:10.1016/j.envpol.2023.121000
WPCI. (2018). World Port Climate Initiative. World Ports Sustainability Program. Retrieved from https://sdgs.un.org/partnerships/world-ports-sustainability-program
Xiao, G., Wang, Y., Wu, R., Li, J., & Cai, Z. (2024). Sustainable Maritime Transport: A Review of Intelligent Shipping Technology and Green Port Construction Applications. Journal of Marine Science and Engineering, 12. doi: - doi:10.3390/jmse12101728
Yoo, Y., Moon, B., & Kim, T.-G. (2022). Estimation of Pollutant Emissions and Environmental Costs Caused by Ships at Port: A Case Study of Busan Port. J. Mar. Sci. Eng., 10(4). Retrieved from - doi:10.3390/jmse10050648
Zhuge, D. W. (2021). Subsidy design in a vessel speed reduction incentive program under government policies. Naval Research Logistics, 68, 344– 358. Retrieved from - doi:10.1002/nav.21948
Citation note:
Acomi N., Surugiu G., Raicu G., Stanca C.: A Thematic Review of Port Services and Emission Reduction Strategies Using ATLAS.ti. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 19, No. 2, doi:10.12716/1001.19.02.14, pp. 447-457, 2025
Authors in other databases:
Nicoleta Acomi:
G. Surugiu:
Gabriel Raicu:

Other publications of authors:


File downloaded 2 times








Important: TransNav.eu cookie usage
The TransNav.eu website uses certain cookies. A cookie is a text-only string of information that the TransNav.EU website transfers to the cookie file of the browser on your computer. Cookies allow the TransNav.eu website to perform properly and remember your browsing history. Cookies also help a website to arrange content to match your preferred interests more quickly. Cookies alone cannot be used to identify you.
Akceptuję pliki cookies z tej strony