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1 INTRODUCTION 

Every port consulting and design organization has its 
own carefully selected toolkit of port project and 
design techniques and know-how to use them 
efficiently. In the same time, all the designers face the 
very same problem: at early stages of the project it is 
not wise to use sophisticated and advanced tools that 
give accurate results, but simple tools permit to gain 
only rough estimations [1-3]. The methodological 

problem behind this contradiction is in the nature of 
the data used by these approaches. Simple and easy 
formula computations deal with the deterministic 
data, while the reality demands to take into account 
the fluctuations caused by the stochastic character of 
all main variables [4-6]. This paper offers an extension 
of the classical deterministic approach that will help 
to cover the gap between analytical and simulation 
approaches. Moreover, the results could turn to be 
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useful in proving the adequacy of any simulation 
models, which itself is a very big problem.  

2 METHODS AND MATERIALS 

Let’s consider the calculation of the average amount 

of cargo that dwells in the port E , when we know 

the average duration of the cargo party formation 

(accumulat ion on the warehouse) fT , mean 

interval of party arrivals (ship calls interval) intT  and 

mean ship party’s volume (call size)  V . Under the 

assumption of triangular form of the party 

accumulation (i.e. with the constant rate of  cargo 

arrival/departure on the terminal), within the one 

party’s dwell time on the terminal  
2

f

dw

T
T =   there 

will be   
1

2

fdw

int int

TT

T T
=   cargo parties of the volume 

V  entering the warehouse, so the average total 

amount is  
1

2

f

int

T
Е V

T
=  .  

All of variables in this formula are stochastic 

values, thus the resulting volume of the cargo storage 

is the stochastic one, too. What judgments on the 

character of the end value can we made? 

For the sake of convenience let us make the 

substitution of the working variables, particularly  

V X= , fT Y= , Z = 
1

intT
 . In this notation the 

formula will take the form of 
1

E XYZ
2

= . Let us 

assume that we know the values of two main numeric 

characteristics of the values X,  Y,  Z , specifically 

the mathematical expectations    xM X m=  , 

  yY m=  ,    zM Z m=  and dispersions  

  xD X D=  ,   yD Y D=  ,    zD Z D= .  

Let us compute the characteristics of the target 

computation value of the amount of storage, or 

  EM E m=  and   ED E d= .  

The evaluation of the mean arithmetic values 

causes no difficulties since by the theorem on the 

computation of independent stochastic values we 

directly have  

   
1 1

XYZ XYZ
2 2

EM E m M M
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= = = 
 

. 

In other words, the mathematical expectations of 

cargo store amount is    

 
1

2
= x y zM E m m m  

The computation of the dispersion is a bit more 

laborious. Actually, let us denote XYZ A=  . Since 

for any non-stochastic value  c we have 

   2D cA D Ac= , then  
1 1

D A D A
2 4

 
= 

 
.  

Further on, by the definition of dispersion we 

have     ( )
2

D XYZ D A AM A m = = −
 

. Since 

the values  X,  Y,  Z  are independent, 

A x y zm m m m= . Respectfully 

  ( )
2

D XYZ x y zM XYZ m m m = − =
  

 

  2 2 2 2 2 22 XYZ     x y z x y zM X Y Z m m m M m m m = − +   

With independent X,  Y,  Z  the values 

2 2 2, , X Y Z also are independent, so 

2 2 2 2 2 2M X Y Z M X M Y M Z     =     
 and  

 XYZ x y zM m m m=  and further 

  2 2 2 2 2 2D XYZ x y zM X M Y M Z m m m   = −   
 . 

In the same time, 
2M X 

   is the second initial 

moment of the stochastic value X , so it could be 

expressed through the dispersion as  

 2 2

xM X D X m  = +  . Similarly, 

 2 2

yM Y D Y m  = +    and  2 2

zZ D Z m  = +   .  

If inserted in the received formulae, these 

expressions will give  

  2 2 2 2 2 2D XYZ x y zM X M Y M Z m m m   = − =   
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Eventually, the seeking dispersion of the total 

amount of cargo stored at a terminal could be 

expressed as  
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The standard deviation of this value is 

E = ED  . 

3 RESULTS AND DISCUSSION 

We could expect by the central limit theorem (stating 
that the sum of many weakly interdependent values 
has a distribution close to the normal one) that the 
stochastic value of total amount of cargo stored at a 
terminal has the Gaussian distribution [7]. Since we 
managed to assess the values of its mathematical 
expectation and dispersion (standard deviation), we 
could construct the correspondent cumulative 
distribution function, as Fig. 1 shows. 

 

Figure 1. Gaussian cumulative distribution function 

By the definition, the cumulative distribution 

function is the probability of the event e E  , 

where e  is a current variable. In the context of our 

study, we could interpret this function as the 

probability that the warehouse of the size e  would 

be sufficient to contain the required amount of cargo 

[8-9]. If the size is equal to the mathematical 

expectations, in 50% it will be enough and in 50% 

there will be the shortage of store facilities.  

Knowing the properties of Gaussian distribution, 

we could expect also, that the interval 

   2 , 2E E E Em m −  +   holds around 95%  of all 

values, thus the warehouse with the size 2E Em +    

will be insufficient only in 2,5%, as Fig. 2 shows. 

 

Figure 2. Assessment of the required warehouse size 

In order to prove the correctness of the results, the 
simulation experiments were conducted. Fig. 3 shows 
the results of an experiment of this simulation, with 
vessels arrival intervals, party sizes and dwell times 
distributed by Gaussian distribution.  

 

Figure 3. Simulation of the warehouse dynamics 

The values of the referenced parameters are 
represented by the tab. 1. 

Table 1. The referenced parameters of simulation 

Description Notation Units M x σ x

Cargo party V [units] 2400 240

Formation time T [hours] 120 12

Arrival interva t [hours] 12 2  

 

The results of the statistical processing (i.e. the 
experimental distribution of values shown by Fig. 3, 
are displayed on Fig. 4 a) and b).      

 

 

Figure 4. Distribution of the simulated values 
Density of distribution b) Cumulative distribution function 
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The calculation by the technique described in this 
study gives the characteristics of the final distribution 
shown by the Tab. 2.  

Table 2. Calculated  parameters of simulation 

Description Notation Units Value

Math.expectation of E ME [units] 12014

Dispersion of E D[XYZ] [units2] 9012302

Standard deviation σ [units] 3002

Spread 2*σ [units] 6004

Upper limit ME+2*σ [units] 18018
 

 

The calculated mathematical expectation and 
dispersion enables to build the model cumulative 
distribution function (Fig. 5) which practically 
coincides with the one produced by the processing of 
the simulation data shown by Fig. 4.  

 

Figure 5. Reconstructed cumulative distribution function of 
the warehouse size  

The proximity of these functions was confirmed 
by statistically valid amount of experiments with 
different distributions (some of them even non-
Gaussian), thus enabling to state that this simple 
technique is adequate. The designer would only make 
several reasonable assumptions over the distribution 
of the input values and immediately could see the 
spread of the output values. Maybe not for 100% 
reliable, this method could find a proper slot in the 
port designer’s toolkit.     

4 CONCLUSIONS 

1 The analytical (formula) calculations cannot give 
the perception of the values’ spread over mean 
values. 

2 The full-scaled simulation could bring the desired 
results but at the cost of developing laborious 
procedures not justified on the beginning stages of 
the port projects.  

3 The method proposed in this study enables to 
receive a reasonable estimation of the stochastic 
values by rather small extension of common 
formula deterministic technique. 

4 The method does not take into account any 
specific properties of the cargo and thus could be 
used for all types of port warehouses.  

5 The approach described in the paper using the 
example of the warehouse could be extended to 
cover the assessments of other technological 
parameters treated as stochastic values.      
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