261
1 INTRODUCTION
The need to reduce the negative impact of road
transport on the environment is the basis for
considering the concept of reconstruction of inland
transport.
In 2017 Poland ratified the AGN Convention, it
indicates the direction of development of the inland
waterway network in Europe [1,2]. The AGN
Convention‐The European Agreement on Main
InlandWaterwaysofInternationalImportance,which
wasconcludedinGenevaon19January1996.AGNʹs
goalistointroducearegulatoryframeworkthatwill
establishacoordinatedplanforthedevelopmentand
construction of inland waterways networks of
international importance and established
infrastructure
andoperational parameters.TheAGN
Conventioncoversaninlandwaterwaynetworkofa
total length of more than 27,000 km, connecting 37
Europeanports[3].
There arethree sections of international
waterwaysinPoland(Fig.1):
E30‐connecting the Baltic Sea from the port of
SwinoujsciethroughtheOder,thefuture
Danube
OdraElbeCanalthrough theDanube to
Bratislava,
E40‐connecting the Baltic Sea from Gdansk via
Vistula to Warsaw, Narew and Bug to Brest and
further through the Dnepr to the Black Sea in
Odessa,
E70‐connectingtheOdraRiverfromtheestuary
of the OdraHavel
Canal to the Warta estuary in
Kostrzyn, via Bydgoszcz, the Lower Vistula and
Szkarpawa or the Vistula River to the Vistula
Lagoon, creating a European waterway route
betweenRotterdamandKlaipeda[13].
By ratifying the AGN Convention, Poland has
committed itselfto upgradingthe main waterways
toatleastIV
classofnavigability.Table1 showsthe
inlandwaterwayoperatingparameters.Waterwaysof
Classes Ia, Ib, II and III have been classified as of
Evaluation of the Possibility of Using Hybrid Electric-
Propulsion Systems for Inland Barges
A.Łebkowski
GdyniaMaritimeUniversity,Gdynia,Poland
ABSTRACT: The paper presents issues related to the possibility of using an electric propulsion system for
inland craft, in this particular case selfpropelled barges. Perspectives for development of inland water
transportinPoland arepresented.Historicalengineeringdesignsusedinwatertransportattheturn
ofthe19th
and20thcenturiesareshown.Thecurrentstatusofstockusedininlandnavigationalongwiththeconditionof
waterwaysavailableinPolandispresented.Energyconsumptionbyinlandcraftusingvariousconfigurations
ofpropulsionsystemsisdiscussed,alongwithcomparisonofenergyconsumptionduringtransportof
goods
usingroadtransport,railtransportandinlandwaterwaytransport.Inadditiontothehybridelectricanddiesel
propulsionsystems,thealternativeistousetheelectricrailmulesformovingthebarges.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 12
Number 2
June 2018
DOI:10.12716/1001.12.02.05
262
regional importance, while classes IV, Va, Vb as of
internationalimportance[4].
Figure1.Plannedwaterways inPoland[2]
Table1.Classificationofinlandwaterways[4]
Waterwayclass
Waterwaywidth[m]
Transitdepth[m]
Mi
n
i
mumc
l
earanceun
d
er
bridges[m]
Cl
earanceun
d
erpower
li
nes
[m]
Max.ship/bargelength[m]
M
ax.szero
k
o
ść
stat
k
u
/b
ar
ki
[m]
Max.ship/bargewidth[m]
Max.ship/bargegross
tonnage[t]
Sluicewidth[m]
Sluicelength[m]
Ia 15 1,2 3,0 8 24 3,5 1,0 <180 3,3 25
Ib 20 1,6 3,0 8 41 4,7 1,4 180 5,0 42
II 30 1,8 3,0 8 57 9,0 1,6 500 9,6 65
III 40 1,8 4,0 10 70 9,0 1,6 700 9,6 72
IV 40 2,8 5,2512 85 9,5 2,5 1500 12,0 120
Va 50 2,8 5,25 15 110 11,4 2,8 3000 12,0 120
Vb 50 2,8 5,2515 185 11,4 2,8 >3000 12,0 187
At present there are 3655km of waterways in
Poland, of which 2417km are regulated navigable
rivers,644km ofchanneledsections ofrivers,336km
ofcanals,and259kmofnavigablewaters.About92%
of accessible waterways (3365km) are used in
shipping. Unfortunately, the requirements for Class
IVandVwaterwaysin
2015weremetbyonly5.9%of
waterways (214km). The remaining 94.1% of
waterways(3441km)wereinclassesI,IIandIII[5].
Plans of the Polish government included in the
regulationsareforcingdesignersofnewwaterwaysto
buildtheminthehighestpossibleclassVb.
An important element
in the implementation of
inland waterway transport is the quality of stock in
inlandnavigation.AccordingtotheCentralStatistical
OfficeinPoland,in2015inoperationtherewere:217
pusher and tugboats, 89 selfpropelled barges, 511
barges and 101 passenger ships. The majority of
operated units, namely 73.0%
of pushers, 48.7% of
pushers, 100% of selfpropelled boats, were build
between 1949 and 1979. The insufficient use of
waterways in Poland causes the share of inland
waterwaytransportintotaltransportin20002015to
decreasefrom0.8%to0.4%[5].
42,00%
15,00%
13,95%
12,26%
2,75%
2,20%
0,40%
0,04%
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
Netherlands Belgium Bulgaria Germany Hungary Slovakia Poland Czechia
Figure2.Volumeofinlandwaterwaytransport[2]
In Poland, it is planned to transfer about 30% of
road transport of goods at distances of more than
300km,towaterorrailtransportby2030and50%by
2050[2](Fig.2,Fig.3).
Figure3. Structure of transported goods by inland
waterwayin2015,where:1–Agriculturalproducts;2–Metal
oresandother miningproducts; 3–Coal,lignite, crudeoil,
natural gas; 4–Secondary (recycled) raw materials,
municipal and other waste; 5–Nonmetallic products; 6–
Chemicalsandchemicalproducts;7–Metals,finishedmetal
products;8–Cokeandrefinedpetroleumproducts;
9–Other;
[2].
Whencomparing theenergyconsumptionforeach
modeoftransport,inlandtransportismostbeneficial.
AccordingtotheMinistryofDevelopment,onetonof
cargo using an inland vessel using internal
combustionenginescanbetransportedatadistance
of370km,usingrailtransportatadistanceof300km
anda100kmwheeledtransport[2].
From the informationpresented above, itis clear
thatinlandwaterwaytransporthasahugepotential,
which, unfortunately, needs to be stimulated by
investing considerable resources in both technical
infrastructure andfloatingstock. Beingontheverge
of realizing the task of reconstruction
of inland
waterway transport in Poland, a question worth
asking is: Isn’t using electric or hybrid power
transmission systems on inland transport vessels a
good idea? One of the proposals for propulsion for
the barge is the possibility of using electric tracked
towingvehiclescalledelectricmules(EM).
2 HISTORY
OFELECTRICINLAND
TRANSPORTATION
The oldest waterways were built in Mesopotamia
around 4,000 BC, in Girnar 3000 years BC, in India
2600yearsBC,inEgypt2300yearsBC,andinChina
500yearsBC.Thefirstsluicesregulatingtheflowof
water were already used by the Greeks in
the third
centuryBC.Thecanalsandriverswereeagerlyused
263
totransportwoodandothergoodsinitiallypropelled
by the strength of human muscles and the river
current, and with the development of steam, diesel
and electric engines. The medieval period was the
timewhenwatertransportwasseveraltimescheaper
andfasterthanlandtransport.
In the 10th century
the Glastonbury Canal was
builtintheUnitedKingdom,withalengthof1750m,
whichwasusedtotransportconstructionstone,grain,
wineandotherproductsuptothefourteenthcentury.
Atthesametime,waterand canals were developed
around the world. The development of canal
infrastructure continued until
the end of the 19th
centurywhentherapidgrowthofrailtransportand
later on the road. The most famous channels are
Panama Channel (1920, length 80km), Suez Channel
(1869,163kmlong),KielChannel(1895,length98km),
and Corinthian Channel(conceived from the
antiquity, but built in the late 19th
century (1893,
6.3kminlength).
Forgoodstransportbyinlandwaterways, barges
withoutpropulsionwereused,towedby pushers or
tugs,andselfpropelledbarges.Intheinitialphaseof
inland transport for the propulsion of rafts, barges
and boats, animal teams were used that moved
parallel to the towed
unit along the canal or river
(Fig.4).
Figure4.Animalcarriagesusedformovingbarges[6].
With the development of technology, horses and
muleswerereplacedbyenginepoweredtractorsand
thenwithrailtractors,whichwerepoweredfromthe
electrictractionnetwork(Fig.5).
Figure5.Thetruckandrailtractorusedtomovethebarges
[6].
At the beginning of the twentieth century, the
electric propulsion systems of barges could be
dividedinto:
Manned and unmanned electric locomotives
(mules), moving on rails along the bank of the
waterwayandtowinga floatingunitviaatowline
(Fig.6).
Figure6. Example of electricrail tractors used for moving
barges[6].
Selfpropelled electric tractors mounted along
waterways, powered by electric traction and
moving onropesinstalledoncolumns.Themost
famous of those days were the Lamb (Fig.7) and
Zinzinssystems.
Figure 7. Exampleof an unmanned electrictractor system
designed byRichard Lamb attheend of the 19thcentury
[6].
264
Vesselspowereddirectlybyoverheadlinetrolley,
using onboard electric motor to tow the vessel
alongasubmergedchain(Fig.8).
Figure8. Examples of electric traction and submerged
systemsalongthewaterway[6].
Vesselspowereddirectlybyoverheadlinetrolley,
using onboard electric motor to power
conventionalpropellersystem(Fig.9).
Figure9. Example of electricrail tractors used for moving
barges[6].
Some of the presented solutions are used in
France,Germany,theUnitedStatesandGreatBritain
to this day, like the current collector designs
engineeredinthosedays(Fig.10)[7].
Figure10.Anexample ofelectric propulsionsystemsfrom
thebeginningofthetwentiethcenturyusedforthepresent
time[8,9].
265
3 COMPARISONOFTRANSPORTCOSTS
Theenergyconsumptionfiguresgatheredduringthe
use of various types of wheeled, rail or intermodal
vehiclesusedinintermodalfreighttransport,confirm
that inland water transport is energy efficient and
environmentally friendly [1012]. Even more energy
efficient and environmentally friendly compared to
all
meansoftransportissea transport.Itisestimated
that the medium barge capacity (54 TEU), having
approximately85minlength,9.5minwidthand2.5
mindraft,isapproximately15timeslargerthanthe4
TEUrailcarand27timesthatofcontainershauled
by
truck with semitrailer (2 TEU) [1,2,4,1012].
AccordingtothematerialspublishedbytheEuropean
Commission in 2003 on energy efficiency, for each
literofburntdiesel,theba rgecantransportatonneof
cargoatadistanceof127km,atraincandothesame
atadistance
of97km,andatruckat50km(Fig.11)
[10,11].
Figure11.Efficiencyofconsumptionof1literofdieselused
for the transport of 1 ton of cargo by various means of
transport[10].
11 years later on the Wasserstraßen‐ und
Schifffahrtsverwaltung des Bundes website, other
valuesarepresented.Accordingtoinformationfrom
25.09.2014,aninlandvesselwithalengthof80÷85m
anda widthof9.5m,iscapable ofusing onelitreof
dieselfueltotransport1tonneofcargoat
adistance
of 370km,thesamecargo transported by rail using
the same amount of fuel can be transported on the
distanceis300kmandinthecaseofsemitrailertruck
it’s100km(Fig.12)[12].
Figure12. Transport distances for one tonofgoods at the
sameenergyexpenditure[12].
The Polish Ministry of Development in 2016
presented the same statistics, stating that an inland
vesselwithalengthof80÷85mandawidthof9.5m,
isabletotransportonetonneofcargousingoneliter
ofdieselfuel overadistanceof370km,the
samecan
be accomplishedbyrailtransportoveradistanceof
300km and in case of truck over 100km [1,2,4]. In
addition, both ministries report that CO2 emissions
are 164 g/tkmforroadtransport, 48.1 g/tkm for rail
transport, and 33.4 g/tkm for inland waterway
transport(Fig.13).
Figure13.Inlandwaterwaytransportadvantage[1,2,4].
Based on independent data and simulation and
model studies [1330], energy efficiency and CO2
emission levels were measured for inland, rail and
road transport. The data is shown in Figures 14
and15.
100 km2 TEU
210 km
80 TEU
240 km54 TEU
300 km
54 TEU
H Y B R I D
400 TEU 680 km
920 km
54 TEU
Figure14. Efficiency of utilization of 1 liter of diesel for
transport of 1 ton of cargo through various means of
transport.
Basedonthedatapresented,itcanbesaidthatthe
most advantageous situation happens when
transporting goods using a large barge (400 TEU)
withacapacityofabout10,000tons.However,sucha
vessel,duetoitssize,cannavigateonlyonwaterways
meeting category VIb criteria. Unfortunately, such
inland
roadsarenotcurrentlylocatedinPoland(class
Vbatmost).
266
2 TEU
80 TEU
54 TEU
400 TEU
5 g CO
2
/ tkm
14 g CO
2
/ tkm
18 g CO
2
/ tkm
40 g CO
2
/ tkm
54 TEU
H Y B R I D
12 g CO
2
/ tkm
54 TEU
11,7 g CO
2
/ tkm
Figure15.CO2emissionsbydifferentmeansoftransportin
gramspertonnekilometer.
More preferably, the situation would be for a
system in which such a barge (400 TEU) would be
powered by an electric propulsion system or pulled
byanonshoremulepoweredfromoverheadtraction
wires. However, the suggested solution would
requirebuildingalongthewaterwayawholeelectric
networkalong
withthetracks.Theconductedtestson
a small barge (54 TEU equivalent) showed that the
hybrid system produced 20% better results than the
identical diesel fueled barge [21]. Of course, the
bargesmovemuchslowerthantrucksortrains,butat
thesametimethecostoftransportcalculated
without
transshipment is the lowest compared to other
intermodaltransportsystems.
4 PROPOSEDELECTRICBARGEDRIVESYSTEM
Forthepropulsionofthebarge,itisproposedtousea
hybridelectricpropulsionsystem.Considerationsfor
theapplicationof the propulsionsystemweremade
forabargemodelwithadisplacementof
about1850
tons (54 TEU). Model study of barge boat hull
resistance was performed using DELFSHIP software
(Fig.16)[19].
Fortheassumed geometric shapeofthe hull, the
required tow capacity required to overcome barge
resistanceatagivenswimspeedwasdeterminedby
thedependence:
T
PRV (1)
where:
P
T‐towingpower[kW]
R‐bargeresistance[kN]
V‐bargespeed[m/s]
Figure16.DesignofhullbargerealizedinDELFSHIP[19].
The total value of barge resistance consists of
resistance values related to its speed of movement,
geometric dimensions and hull shape. These factors
affectthehydrodynamicresistanceofthehullagainst
water (R
AH), the wave resistance and residual
resistance (R
R), and the aerodynamic resistance of
surfaceelementsofthehull(R
A)
H
RA
R
RRR (2)
Knowing the value of towing power and
resistance,onecandeterminethepoweroutputofthe
electricmotorusedtodrivetheunit.Todeterminethe
power output of the power unit, it is necessary to
knowtheefficiencyofthetransmissionsystem,which
consists of the efficiency of the
hull barge (0,6 ÷ 1),
efficiency of the shaft line (0,9 ÷ 0,99), rotational
efficiency (0,95 ÷ 0.99) and the free running screw
efficiency(0.35÷0.75).
TT
PP
EM
SRRPH
P



(3)
where:
P
EMpoweroutputofelectricpowertrain[kW]
P
Ttowingpower[kW]
drivetrainefficiency
Hbargehullefficiency
Sshaftefficiency
Rrotationalefficiency
RPfreerunningpropellerefficiency
Inordertoproperlyselectthepoweroftheelectric
drive system, the efficiency of the various power
transmissioncomponentsmustbetakenintoaccount
(Fig.17). For the vessel under consideration, the
electrical power of the propulsion system will be
approximately840kW,witha
maximumspeedof22
km/h.Whenchoosingthepropulsionsystempower,it
is important to keep in mind that the barge should
move at a safe speed, adapted to the existing
navigationalandatmosphericconditions.Bargespeed
cannot pose any danger to other ships or waterway
users. For this reason, the
speed with respect to the
edge of the waterway is the most commonly used,
andissetforriversandcanalsatthelevelof58km/h
267
(upstream) and 1012 km/h (downstream). On other
reservoirssuchaslakesorlagoons,thespeedmaybe
higherandreachupto15km/h.Insituationswhere
theboatʹspowertrainwillnothavesufficientpower,
travelupstreamwillnotbepossibleand,inaddition,
suchacraft
wouldposearisktocrewmembersand
otherunitsmovinginthatarea.
It should be noted that for the barge propulsion
system with the use of electric mule in Polish
conditions (maximum current of the fastest river in
Poland‐Vistula,duringtherainsis10km/h,withthe
averagestateofabout6÷7km/h).Thepowerneeded
tomovethebargeintheseconditionswouldbeabout
4.5timessmallerandontheorderof180[kW].
Figure17. The structure of the hybrid DieselBattery
ElectricPropellerbarge.
Figure18.Assignedpredeterminedbargespeed profilefor
thetestroutesection.
Figure19showstheresultsofenergyconsumption
associated with the motion of the barge on a given
test route for DieselPropeller (DP); DieselBattery
ElectricPropeller(DBEP),andElectricMule(EM).
Figure19. Plot of energy released from fuel for various
powertrainconfigurationsonthesameroutetest.
Figure 20 shows the CO2 emissions associated
with the motion of the barge on a given test route
dependingonthepowertraintested.
Figure20. Plot of CO2 emissions by fuel for various
powertrainconfigurationsonthesameroutetest.
Figure 21 shows the costs associated with the
motionofthebargeonagiventestroutedepending
onthepowertraintested:DP,DBEP,EM.
Figure21. Plot of fuel cost for various powertrain
configurations(DP,DBEP,EM)onthesametestroute.
Figure 22 shows an example of the energy flow
parameters of the DieselBatteryElectricPropeller
hybrid drive system during the cruise on the test
route.
Figure22. Plotofpower flowin theDBEP poweredbarge
whilecruisingthemodelledtestroute.
Figure 23 illustrates some of the parameters
associated with the barge propeller speed that
translatesintotheinland bargespeedover groundon
thetestroutefortheDieselBatteryElectricPropeller
hybriddrive.
268
Figure23.Plotofsetspeed,actualspeedandpropellerRPM
in DBEP powered barge while cruising the modelled test
route.
Figures 24 and 25 illustrate the electrical
parameters connected with the hybrid propulsion
DBEPofbatterypack,suchasvoltage,stateofcharge,
batterycurrent,propulsionpower.
Figure24.Plotofvoltage andstateofchargeofbatterypack
ofthehybridpropulsionDBEP
Figure25.Plotofbatterycurrentand propulsionpower of
thehybridpropulsionDBEP
5 CONCLUSIONS
Theresultsofenergyefficiencyanalyzesshowthat
thesmallestenergyconsumptionintheintermodal
transport group can be achieved by barge
transport. In addition, these coefficients could be
further improved by using hybrid or electric
propulsionsystemsonboardorwithlandmules.
Theuseof
ahybriddieselengine(DieselBattery
ElectricPropeller)isbeneficialfortheversatilityof
theuseofthebargeinvariouswaterbodies.Using
abattery packcan help reduceenergy
consumption, especially when operating
downstreamofriver,orusinganelectricmule.
Theuseofahybridpropulsion
systemforbarges
is beneficial for protecting the environment by
significantly limiting greenhouse gas emissions
and the energy required to drive the barge. In
addition, the use of a battery pack to reduce the
GHG emissions during maneuvering,
maneuveringinquietareas,andotherareaswhere
gaseous emissions andengine noise
are
undesirable.
The use of Electric Mule reduces the cost of
transportationofgoodsonbarges. Consideringthe
relatively high CO
2 emission indices (798 kg
CO
2/MWh [17]), using EM, this GHG can be
reduced by about 25% compared to conventional
fluesystems.
Inland water transport is ideally suited for the
carriage of nonfastmoving, moistureinsensitive
andbulkloads.
Thedisadvantageofinlandwaterwaytransportin
Poland is the poor quality of waterways,
lack of
infrastructure, and dependence on water
conditions and hydrometeorological conditions
(freezing in winter, low water levels during the
summer).
Tomakefulluseoftheinlandwaterwaytransport
potential in Poland, many costly investments in
infrastructure and maintenance of waterways are
required. However, this investment can launch a
powerful potential present in Polish waterways
and turn to economic, tourist, social and
environmentalgrowthinaquickperiodoftime.
REFERENCES
[1] MGMiŻŚ,Założeniadoplanów rozwojuśródlądowych
dróg wodnych w Polsce na lata 20162020 z
perspektywą do roku 2030. Monitor Polski, Dziennik
UrzędowyRzeczypospolitejPolskiej,Poz.711,Uchwała
RadyMinistrówz14.06.2016r.,http://isap.sejm.gov.pl/
[2] Ministerstwo Rozwoju, Założenia do planów rozwoju
śródlą
dowychdrógwodnychwPolscenalata20162020
z perspektywą do 2030 roku, http://ungc.org.pl/wp
content/uploads/2016/04/26042016_Prezentacja_
Ministerstwo_Rozwoju.pdf,(04.2016).
[3] Ratification of the Convention, in the opinion of the
Polishexpert3.0AGNJacobStonawski.www.polska3
0.pl,(11.2016).
[4] Rozporządzenie Rady Ministrów z 07.05.2002r. w
sprawie klasyfikacjiśródlądowych dróg
wodnych.
Dz.U.Nr77,Poz.695,załącznik1÷3.
[5] Główny Urząd Statystyczny, Transport wodny
śródlądowy w Polsce w 2015 r., http://stat.gov.pl/
(08.2016).
[6] DeDeckerK., Trolleycanal boats.LowTech Magazine,
www.lowtechmagazine.com,(12.2009).
[7] Geschichte des Oberleitungsbusses.
www.wikiwand.com,(02.2017).
[7] LetunneldeMauvages.www.bordabord.org,(12.2009).
[8]
ShellerA.,LetunnelfluvialdeMauvages:unouvrage
de 4 877 mètres, accessible qu’aux plaisanciers et aux
bateaux de commerce. www.allboatsavenue.com,
(12.2013).
269
[9] Le tunnel de Riqueval et son toueur à Bellicourt.
www.petitpatrimoine.com(11.2016).
[10] Inland Waterway Transport. European Commission,
EnergyandTransportDG,ISBN9289443448,2003.
[11] PiekarskiL.,AnnexD,StatisticalApproachtoInland
WaterwayTransport.EuropeanConferenceofMinisters
ofTransport.ISBN928211354x,
ECMT2006.
[12] Binnenschiff und Umwelt, Das Verkehrssystem
Binnenschiff / Wasserstraße ist umweltfreundlich,
kostengünstig und sicher,
www.wsv.de/Schifffahrt/Binnenschiff_und_
Umwelt/index.html,(25.09.2014).
[13] Nicholas L., Do CSX Trains Really Move 1 Ton of
Cargo 400 Miles on 1 Gallon of Fuel?, The Center for
Transportation and Livable Systems (CTLS).
www.ctls.uconn.edu,(28.02.2013).
[14] Holly
A., The Nation’s Freight Railroads Now
Average 480Tonmilespergallon. Assciation of
AmericanRailroads.www.aar.org,(22.04.2010).
[15] Fuelconsumptionbytrucks‐Specifications
www.truckmania.pl/content/view/168/6/
[16] Wasilewicz W., Research electricity consumption for
the purpose of traction. Przegląd kolejowy
elektrotechnicznynr.9/1974.
[17] The National Centre for Emissions Management
(KOBiZE). CO2
Benchmark for Energy Enduse.
www.kobize.pl(02.2017)
[18] Dünnebeil F., Lambrecht U., Fuel efficiency and
emissions of trucks in Germany‐An overview. IFEU
InstituteHeidelberg2012
[19] DelftshipMarineSoftware.www.delftship.net
[20] Papanikolaou A., Ship Design. Springer Netherlands
2014.DOI10.1007/9789401787512
[21] Bach R., Reduzierung des
Dieselverbrauchs und der
CO2Emission durch Dieseldirekten Hybridantrieb.
(04.2015)
[22] FlämigH.,Luft‐ undKlimabelastung durch
Güterverkehr. www.forschungsinformationssystem.de
(03.2016)
[23] Mittelweseranpassung Das Großmotorgüterschiff
setztneueMaßstäbe.www.nbahannover.wsv.de
[24] Gierusz W.,Łebkowski A., The researching ship
ʺGdyniaʺ.PolishMaritimeResearch,Vol.19,2012,p.11
18.
[25] Gierusz W.,
Simulation model of the shiphandling
trainingboatʺBlueLadyʺ.IFACConferenceonControl
Applications in Marine Systems Location. IFAC
ProceedingsSeries,2002,p.255260.
[26] Gierusz W., Tomera M., Logic thrust allocation
applied to multivariable control of the training ship.
Control Engineering Practice, Vol. 14, Issue 5, 2006,
p.511524.
[27] Lisowski J.,Computational intelligencemethods ofa
safe ship control. Procedia Computer Science, Vol. 35,
2014,p.634643.
[28] Binnenschiff.
https://de.wikipedia.org/wiki/Binnenschiff
[29] SpecificCO2emissionspertonnekmandpermodeof
transportinEurope,19952009.www.eea.europa.eu
[30] WoolfordR., McKinnonA.,TheRoleoftheShipperin
Decarconising Maritime Supply Chains. Chapter 1,
Current Issues in Shipping, Ports and Logistics. Asp,
Vubpress,Upa,2011.ISBN9054878584.