447
NOMENCLATURE
BP= baseplane
b= breadthofdoublesides
GM=metacentricheight
GZ=rightinglever
h
GM
initialmetacentricheightoftheintactship
i
x= transversemomentofinertiaofthefreesurfaceof
floodwater
K= volumetricstiffnessoftheship
l= lengthofcompartment
r
C= differentialmetacentricradius
r
w= metacentricradiusoffloodwater
T= draughtoftheintactship
V=volumedisplacement
v= volumeoffloodwater
z
w= heightofcentreofgravityoffloodwateraboveBP
J= incrementoftransversemomentofinertiaofthe
undamagedwaterplaneduetosinkage
1 INTRODUCTION
Pawłowski & Laskowski (2014) discuss the effect of
various subdivision arrangements of ropax vessels
ondamagestability.Theshipinvestigatedhadtheold
typeofsubdivision,asinFigure1,confinedtospace
below the bulkhead deck (car deck), densely
subdividedbytransversebulkheads.
Mostofthese compa
rtments werevoid,not used
forthecarriage of any cargoorsupplies. Above the
cardeck,therewasnoreservedbuoyancy.Thistype
ofsubdivisionwascommonuntilendofthe1990s.
Nowadays, space below the car deck is frequently
utilised for roro cargo in the form of a long lower
hold (LLH), stretching for ab
out half of the ship
length(seeFigure2).Ithasdoublesides,subdivided
bytransversebulkheads,usuallyterminatedatthecar
deck,andnotransversebulkheadsincargospace.For
better safety, the double sides should extend above
the car deck; see examples discussed by Pawłowski
(1999),andshowninRINA(2001).
Effect of Watertight Subdivision on Subdivision Index
for Medium Size Ro–Ro Passenger Ferries
M.Pawłowski&A.Laskowski
PolishRegisterofShipping,Gdańsk,Poland
ABSTRACT:RopaxvesselsshouldfulfiltherequirementsofthecurrentharmonisedSOLASConvention.The
studyanalysestheeffectofvariousropaxvesselsubdivisionarrangementsonthesubdivisionindex.APolish
ferrywaschosenasagenericshiptoperformthestudy.Forillust
rationofdamagesurvivability,theattained
subdivisionindexAwascalculatedforanumberofmodifiedconfigurations.Thearrangementsincludedsingle
anddoublesidesaboveandbelowthecardeck,withandwithoutadoublebuoyantcardeck.Theconclusions
ofthestudycanbeusedinthedesignofnewropa
xvessels.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 11
Number 3
September 2017
DOI:10.12716/1001.11.03.08
448
Figure1.Watertightsubdivisionofoldroroferries
Figure2.Watertightsubdivisionoftheinvestigatedropax
The current study is performed using a Polish
ferryasgenericship,showninFigure2,builtin1990,
still in operation, whose main particulars are as
follows:
overalllengthLOAm,
subdivisionlengthLsm,
lengthbetweenperpendiculars Lppm,
breathBm,
depthHm,
designdraughtTm,
widthofdoublesidesbB/m,
heightofdoublebottomhb
B/m,
heightofCGaboveBPKGm,
metacentricheightGMm,
blockcoefficientcB,
numberofpersonsonboard N=314,
requiredindexofsubdivision R=0.69058.
The ship fulfils the requirements of the IMO
resolutionA.265(1974),thepredecessorofthecurrent
harmonised SOLAS Convention (2009). The said
resolutiondoesnotrequirereservedbuoyancy
above
thecardeck.InthecaseofaLLHbelowthecardeck,
thewidthofthedoublesidesshouldbeequaltob=
0.2B,whiletheheightofthedoublebottomshouldbe
atleasthb=0.1B.Inviewofdamagesafety,theheight
ofthedouble
bottomshouldbeaslowaspossible.A
minimum height of the bottom for the ship
investigatedaccordingtoPRSequalshb=1.025m.
2 NUMERICALEXAMPLES
2.1 Example1
Forillustrationof damage survivability, theattained
subdivisionindexAwillbecalculatedforanumber
of modified configurations.
The generic one, treated
asExample1,isshowninFigure2andFigure3.The
shiphas four decks.Deck 1 is theinner bottom and
Deck2isthecardeckataheight7.9m,Deck3ata
height13.2m,andDeck4ataheight
18,2m.Ballast
tanks in the double sides and double bottom are
connected to each other, creating thus a symmetric
space(Figure3),beneficialinthecaseof flooding.It
allows for a rapid crossflooding if the tanks in the
double sides are provided with efficient airescapes
(vents)
placedatthesides,closetothetopoftanks,to
eliminate detrimental air cushions that may occur
during flooding. The same should apply to cargo
space on Deck 1. To increase further real safety in
damage condition, the car deck should be equipped
with downflooding arrangements, thus making the
car deck transparent for floodwater and air. The
449
downflooding arrangements prevent the
accumulationofwateroncardeck,whichisthemain
reasonforthecapsizingofdamagedroroships.For
thegenericship,accordingtotheoriginaldesign,the
indexofsubdivisionA=0.73015,whichismorethan
therequiredvalueR=0.69058.
Figure3.Crosssectionoftheoriginaldesign
2.2 Example2
The ship as above, but with Deck 2 as a pontoon
creatingabuoyant1600mmdoubledeckofthesame
as the height of deck girders, is shown in Figure 4,
dividedlongitudinallyatthePS.SpacesaboveDeck3
are not included in stability calculations, therefore
theywill not be shownfurther down. Atthe design
draught,theundersideofthebuoyantdeckismerely
0,4mabovethewaterline.Theattainedindexvalueis
now A = 0.74574, which is only marginally higher
thaninthepreviouscase.Thisisbecausethebuoyant
deckin
thiscaseremainsunderwaterovermostofits
lengthinthemajorityofdamagescenarios,duetothe
bow trim, thus insignificantly contributing to the
reductionofthefreesurfaceeffect.
Figure4.CrosssectionoftheshipinExample2
Theotherreasonisasmallresidualfreeboardand
thelackofreservebuoyancyabovethecardeck.
Roro ships, in general, have high deck girders
becauseofthelargeunsupporteddeckspans.Inview
oftheproblemofcargohandling,stowageisusually
restrictedtospacesbelowtheflanges
ofthesegirders.
There is an opportunity, therefore, to seal off the
spaceupwardsfromtheflangesofthedeckgirdersto
thedeckplatingtoformachamber(pontoon)thatcan
provide additional buoyancy, and depending on its
location,heightandextent,thatisofsomeadvantage
in terms
of damage survivability. The problem of
locatingthebuoyantdeckisafairlyinvolvedexercise,
discussed by Pawłowski (1999). Adding a pontoon
hardlychangestheweightoftheship.
TheRoroprobEUresearchproject(2000–2003)did
notaccountfortheoptionofabuoyantcardeck.Two
first ropax
vessels ever built in the world with a
double car deck were built at the Shipyard Nova in
Szczecinin2001,describedinBestShips(2001).They
incorporated the features discussed above. The
double deck appeared to be very effective on these
ships.
2.3 Example3
Ashipasin
Example2,butwithaddedwingtankson
Deck 2 of breadth b = 0.1B, extending to Deck 3
(Figure5).Inthiscasethereisasubstantialincreaseof
the index to the value A = 0.83255. As can be seen,
adding reserved buoyancy above the car deck
significantlyincreases
theindex.Andthisobservation
canbetakenasarule.
Figure5.CrosssectionoftheshipinExample3
2.4 Example4
AshipasinExample3,butwithcardeckraisedto8.1
m, resulting in change of deck height by 0,2 m.
Positioningof alltanks adjacenttodeck2is altered.
The height of the buoyancy pontoon changed from
1.60 m to 1.80 m. The subdivision
index obviously
increasedtoA=0.86729.
2.5 Example5
Changes were introduced similar to those described
inthepreviousexamples,butwith nochangetothe
height of the car deck. They involved introducing a
sheerofthecardeckintheformofasegmentedline,
withknuckles
some⅓ofdecklengthfromtheends,
withariseofthedeckattheendsby1.00m.Alltanks
adjacenttoDeck2changedtheirpositionaccordingly.
ThesubdivisionindexincreasedtoA=0.87804.
450
3 FURTHERNUMERICALEXAMPLES
The study analysed in addition the impact of the
lengthofthelonglowerholdLLHonthesubdivision
indexanddecreasedheightofthedoublebottom.In
examples1a)to5a)computationswereperformedfor
alonglowerholdLLHlengthenedby4.2mtowards
the stern of the generic ship with the closing stern
framemovedfrom39.2mto35.0m.
In examples 1b) to 5b) the double bottom was
lowered from 2.40 m to 1.40 m, and the buoyancy
pontoonheightraisedfrom1.60mto2.00.
Therelationsbetweenparametersin
examples15
weremaintained.However,thesubdivisionindexfor
theexpandedlonglowerholdLLHwassignificantly
lowercomparedtothegenericship.Loweringofthe
doublebottom,inpractice,hadnosignificantimpact.
Thetablesbelowpresenttheindicesofsubdivision
forparticulardesigncases.
Table1.Subdivisionindexforgenericshipparameters.
_______________________________________________
Nr ParameterA
_______________________________________________
1 Generic0.73015
2 Example1,pluspontoon1.6m0.74574
3 Asin2,pluswingtanksoncardeck0.1B 0.83356
4 Asin3,plusdeckraisedby0.2mto8.1m, 0.86729
pontoonheight1.8m
5 Asin3,plus1msheerofcar
deck0.87804
_______________________________________________
Table2.Subdivisionindexfororiginalshipparameterswith
lengthenedLLH.
_______________________________________________
Nr ParameterA
_______________________________________________
1a Genericship0.68307
2a Asin1a,pluspontoon1.6m0.69210
3a Asin2a,pluswingtanksoncardeck0.1B 0.79705
4a Asin3a.,plusdeckraisedby0.2mto8.1m,0.81254
pontoonheight1.8m,
5a Asin3a,sheerofcardeck
1m0.80055
_______________________________________________
Table3.Subdivisionindexfororiginalshipparameterswith
lowereddoublebottom.
_______________________________________________
Nr ParameterA
_______________________________________________
1b Genericship0.72476
2b Asin1b,pluspontoon2.0m0.73277
3b Asin2b,pluswingtanksoncardeck0.1B,0.83243
4b Asin3b,plusdeckraisedby0.2mto8.1m,0.86086
pontoonheight2.0m
5b Asin3b,sheerofcardeck
1m0.87620
_______________________________________________
4 CONCLUSIONS
Theanalysisoftheindicesofsubdivisionforvarious
configurationsofthegeneralarrangementshowsthe
followingconclusions:
1 The long lower hold LLH under the car deck
contributes positively to the attained subdivision
indexA.Nevertheless,inthecaseofhulldamage,
symmetrical flooding achieved by cross
flooding
ofthe opposite sidetanks is recommended along
with an effective air venting system to eliminate
potentialaircushions;
2 An additional buoyancy pontoon under the car
deck slightly increases survivability measured by
thesubdivisionindex;
3 Side tanks of the width b = 0.1B significantly
increasethe subdivision
indexanddoesnotlimit
operationalcapacity of the ferry space between
deckgirdersandsideframesisanywayuselessfor
thecarriageofrorocargo;
4 Another option for increasing the subdivision
indexistoraisetheheightthecardeck.However
suchasolutionisnotalways
feasible;
5 Sheerofaftandforecardeckenhancessafety,but
notasmuchasexpected;
6 ThelengthofthelonglowerholdLLHshouldbe
carefullysetasexcessiveextensioncouldleadtoa
considerabledropofthesubdivisionindex;
7 Theimpactofdoublebottomon
subdivisionindex
is negligible, supported also by work of Sonne
Ravn(2003).
REFERENCES
International Maritime Organisation. 1974. Regulations on
subdivision and stability of passenger ships (as an
equivalent to part B of chapter II of the 1960 SOLAS
Convention).London.
International Maritime Organisation. 2009. SOLAS
Convention,ConsolidatedEdition2009.London.
Pawłowski, M. 1999. Marine Technology, Vol. 36, No. 4,
Subdivisionof RO/ROships
forenhancedsafetyinthe
damagedcondition:194–202.
PawłowskiM.&LaskowskiA.2014.TransRINA,Vol.156,
Part A2, Intl J Maritime Eng, Effect of watertight
subdivisionondamagestabilityofroroferries:131–136.
RINA.2001,BestShipsof2001:4647.
ROROPROB.2000–2003.EUResearchProject,
FP5,DGXII
BRITE,Probabilisticrulesbasedoptimaldesignofroro
passengerships.
Sonne Ravn, E. 2003. PHD Thesis, Probabilistic damage
stabilityofroroship.