
576
The stability calculations were performed
assumingthatthenliferaftisasolidbody.Thecentre
of gravity was determined in coordination system
presentedinfigure8:X
g=0,025m,Yg=0m,Zg=0,32m,
(
Zg‐measuredfromthebottomofliferaft).
Figure8. Model of the 8 persons liferaft (Technical report,
2014)
The range of drafts used for the calculation of
hydrostaticdataispresentedinfigure9.
Figure9. Range of drafts used in calculations (Technical
report,2014)
Thehydrostaticdatacalculatedfortheliferaftare
presented in table 1, where: T [m] – draft, V [m
3
] –
volumeofunderwaterpart,D[t]–buoya ncy, VCB
[mm] – vertical centre of buoyancy Z
g, Aw [m
2
] –
waterlinearea,Mj[tm/m]–momenttotrimper1m,
buoyancyincreaseper1cmdraftincrease.
Thestaticstabilitycurvesofaliferaftarepresented
in figure 10. There were three assumed loading
conditionsanalysed with three different positions of
thecentreofgravity:
2persons
are lyingdownonthe floor,therestis
sittingaroundintheliferaft:zg=0.4m,
all survivors are sitting symmetrically around in
theliferaft:zg=0.5m,
2personsarestanding,therestissittingaroundin
theliferaft:zg=0.8m.
Table1.Hydrostaticdataforliferaft‐draftrangefrom0m
to0.5m.
_______________________________________________
T V D VCB Aw Mj TPC
[m] [m
3
] [t][mm] [m
2
] [tm/m] [t/cm]
_______________________________________________
0.000 0.018 18.400 0.000 5.500 0.900 0.055
0.027 0.170 174.647 0.015 5.567 0.974 0.056
0.054 0.327 335.690 0.024 6.070 1.102 0.061
0.081 0.494 507.025 0.039 6.345 1.167 0.063
0.107 0.667 684.008 0.050 6.490 1.197 0.065
0.134 0.842 863.617 0.069 6.541 1.202 0.065
0.161 1.017 1043.201 0.080 6.488 1.179 0.065
0.188 1.189
1220.125 0.088 6.342 1.131 0.063
0.215 1.356 1391.334 0.093 6.064 1.047 0.061
0.242 1.513 1552.166 0.107 5.555 0.898 0.056
0.268 1.651 1694.216 0.120 5.300 0.811 0.053
0.295 1.804 1850.361 0.133 5.949 0.966 0.059
0.322 1.968 2019.065 0.148 6.276 1.031 0.063
0.349 2.139 2194.669 0.163 6.457 1.056 0.065
0.376 2.314 2373.730
0.178 6.531 1.051 0.065
0.403 2.490 2554.027 0.193 6.540 1.030 0.065
0.429 2.664 2732.734 0.207 6.423 0.971 0.064
0.456 2.833 2906.743 0.222 6.193 0.872 0.062
0.483 2.995 3072.160 0.235 5.778 0.717 0.058
0.510 3.042 3121.208 0.239 5.680 0.698 0.057
_______________________________________________
Figure10. Stability curvesfor different positions of liferaft
centreofgravity(Technicalreport,2014)
4 CONCLUSIONS
Operationalreliabilityofaliferaftisa characteristic
informing whether it fulfils live saving functions in
given hydro‐meteorological conditions. To minimize
thedangerofcapsizinginstrongwindandwaves,in
partially occupied liferafts, the survivors should
always occupy the windward side. In real life the
occupation
is random, therefore in the presented
studytheequaldistributionofsurvivorsandthelevel
static trim were assumed. (Abramowicz‐
Gerigk&Burciu, 2014). The presented preliminary
design should be followed by the numerical
calculations of hydrodynamic and aerodynamic
reaction forces in wind and waves, towing and
recoveryfromthewatercharacteristics
(Burciuetal.,
2001; Marchenko, 1999; Raman‐Nair et al., 2008;
http://data.tc.gc, 2012) to optimize the shapes of
buoyancychambers,ballastpocketsandcanopy.