343
1 INTRODUCTION
Computational support for manoeuvers
determination in ship encounter situations may
significantlyincreasesafetyofpassengers, crewand
cargo. Various methods supporting collision
avoidance manoeuvers for ships have been
developed in the last decades. However, it was the
digitalandcomputersciencefastprogressinthelast
severalyearstha
tmadepossiblecreationofeffective
telematics systems implementing these methods.
Amonghardwaresolutionsonecandistinguishsuch
elements,alreadyimplementedonmostofvessels,as
AutomaticIdentificationSystemξˆ±β€ξˆ±AISorTargetTracking
β€ξˆ±TT(includingAutomaticRadarPlottingAidξˆ±β€ξˆ±ARPA).
These systems are utilized mostly to detect and
evaluate presence and motion parameters of the
othershipsinthevicinityoftheownship.
Software collision av
oidance solutions may be
roughly grouped into two categories: deterministic
and heuristic (or meta‐heuristic) methods. The
former one consists of algorithms that iteratively
calculate optimal and safe trajectories (or their sets)
in case of an encounter. A typi
cal property of a
deterministic collision avoidance method is a
possibility to obtain a fully optimal solution.
However, typically it is reached by investing
significant amount of processing and/or
computations, which results in long algorithm
execution time.Another disadvantage here is a
difficulty with handling some of the op
timization
constraints(e.g.dynamicconstraints).
Unlike the deterministic ones, the heuristic
collisionavoidancemethodsbaseonfastconverging
optimizationalgorithms,thususuallytheyareableto
return results after significantly shorter period of
time. Also possibilities to model virtually any
constraintintheoptimizationproblemareunlimited.
Yet, the ma
in disadvantage here is that the results
(trajectories or sets of trajectories) are usually sub‐
optimal.However,withafineconstructedheuristicit
is possible to obtain both fast convergence and
Data Acquisition in a Manoeuver Auto-negotiation
System
J
.Szlapczynska
GdyniaMaritimeUniversity,Gdynia,Poland
ABSTRACT:Typicalapproachtocollision avoidance systemswithartificial intelligence support is that such
systemsassumeacentralcommunicationandmanagementpoint(suchase.g.VTSstation),usuallylocatedon
shore. This approach is, however, not applicable in case of an open water encounter. Thus, recently a new
a
pproach towards collision avoidance has been proposed, assuming that all ships in the encounter, either
restrictedoropenwater,communicatewitheachotherandnegotiatetheirmaneuvers,withoutinvolvingany
outer management or communication center. Usually the negotiation process is driven by the collision
avoidancesoftwareandcalledauto‐negotiation.Thispa
perelaboratesondataacquisitionproblemincaseof
themaneuverauto‐negotiation.Itfocusesonshipsʹinitializationinthesystemanddatagathering.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 9
Number 3
September 2015
DOI:10.12716/1001.09.03.06
344
insignificant differences between optimal and sub‐
optimal solutions. One can distinguish also a
subgroup of heuristic collision avoidance methods,
namelytheexpertordecisionsupportsystems.These
systems usually relay on heuristics as their
optimizationcores,butextendtheirfunctionalityby
providingadditionaldecisionmakingsupport.
All the above mentioned
 approaches to
manoeuvers determination are based on an
assumption that the methods are used, utilized or
runinacentralcontroltrafficpoint,e.g.VTSstation,
usuallylocated on shore. Hence, a decision on how
the final manoeuvers should be like is made in an
arbitralandcentralizedfashion.While
thisapproach
is natural for restricted harbor area, hardly it is
possible for an encounter in open waters. Thus,
recently a new idea of decentralized manoeuvers
determination has emerged, as presented in (Hu et
al.,2008;Hornauer,2013;HornauerandHahn,2013).
It assumes that encountering ships communicate
with each
other without participation of any outer
party and establish their further collision avoidance
actionsbymeansofnegotiation.Ifthewholeprocess
of manoeuvers determination (i.e. data acquisition,
negotiation and optimization of manoeuvers) does
notneedanyhumaninteractionξˆ±β€ξˆ±itiscalledanauto‐
negotiation one. Computational part of manoeuver
determination
 in the auto‐negotiation proposals
strongly relies on previously described centralized
approaches to collision avoidance, namely
deterministicorheuristicones(especiallythelatter).
However, in such case a few brand new elements
must be introduced to the system, such as detailed
data acquisition formats, negotiation protocols,
resultsdistribution,etc.
It
isworthnoticingthatthedecentralizedcollision
avoidance actions, often based also on negotiations,
are common for nowadays bridge communication
routines on open waters. Indeed, in a case of an
encounter,captainsornavigatorsoftheshipsusually
trytocontacteachotherdirectlyviaVHSradio(open
water) or via
 the VTS station (harbor area) to
establish necessary maneuvering. Obviously, in all
cases the arrangements ought to comply with
COLREGS(1972)regulations.
This paper aims at presenting the author’s
proposalofamaneuveringauto‐negotiationsystem,
particularly focusing on its first element: data
acquisition. The rest of the paper is
organized as
follows: section 2 presents a review of papers on
collision avoidance in general and also the auto‐
negotiation one. The section 3 presents a general
description of the proposed system. In the next
sectiondataacquisitioninthesystemispresentedin
detail (separately as initialization and data
gathering).
Section 5concludesand summarizesthe
materialpresented.
2 LITERATUREREVIEW
The centralized collision avoidance methods
constituteabasisofthemanoeuverauto‐negotiation
ones, thus a literature review of the former is
essential in this paper. Following previously
presented classification of collision avoidance
methods with a centralized control point,
they may
belong to either deterministic or heuristic group of
methods. A general, but thorough, review of both
thesegroupswaspresentedbyStatherosetal.(2008).
Classical deterministic collision avoidance
methodsarebasedondifferentialcalculusutilizedto
solvetheoptimizationproblem,aspresentede.g.by
Lisowski (1985). In this
 approach a set of ships is
monitored and controlled during the main
algorithmβ€˜s run. It is based on a game model β€“ξˆ±
strategiesofallthevesselsaretakenintoaccountas
they were β€œthinking players”. The differential
elements are responsiblehere for modelling of ship
dynamic. Asimilar, differential
calculus‐based,
researchhasbeenconductedandpresentedin(Zak,
2004). It proposed utilization of multiple complex
motion rules describing collision situation, which
was a special case of a more general definition of
controlled movement approach. Another
deterministic method, called Collision Thread
Parameters Area (CTPA), was proposed by Lenart
(1982). In
 CTPA a navigator is able to select a safe
combination of own course and speed utilizing a
coupled coordinate polar system (presenting both
speed and position of ships), taking into account
circle‐shaped ship domains. The CTPA method has
been extended (FCTPA) to support any convex
domainbySzlapczynski(2008).
Mostoftheheuristiccollisionavoidancemethods
benefit either from genetic algorithms(GA) or their
successors β€“ξˆ± evolutionary algorithms (EA). One of
the first such approaches has been proposed by
Smierzchalski(1999),whereEAwasabouttofindthe
ownshiptrajectoryassumingthatalltheotherships
keeptheircourses
unchanged.Thisresearchhasbeen
continued since then, i.e. in (Kolendo et al., 2011) a
new scaling function has been proposed.Similar
collisionavoidanceGA/EAbasedmethodshavebeen
also proposed by other authors. Ito et al.(1999)
presented a GA algorithm utilized for collision
avoidancemaneuveroptimization.AlsoZeng
(2003)
and Tam & Bucknall (2010) proposed algorithms in
which optimal own ship trajectory is sought by
meansofanEAalgorithm.Anextendedapproach,in
which not only a single trajectory, but a set of
trajectories for all the ships in the encounter is
sought, has been proposed in
(Szlapczynski, 2010;
Szlapczynski&Szlapczynska,2012).Inthiscasenota
singletrajectory,butthewholetrajectorysetevolves
at once. Quite different, though still heuristic,
approach has been proposed byCheng& Liu (2007)
and Tsou & Hsueh (2010). The former presents
genetic annealing algorithm for trajectory
optimization, whereas the latter
 utilizes ant colony
algorithmforthesimilarpurposes.Anotherheuristic
ofswarmintelligencehasbeenutilizedinadecision
support system proposed by Lazarowska (2012). In
(Brcko and Swetak, 2013) fuzzy reasoning has been
usedtobuildacollisionavoidancedecisionsupport
system.Finally,Pietrzykowskietal.(2009)proposed
a
sophisticated decision aid system supporting
maneuveringcomplyingwithCOLREGSregulations.
Thefirstpapersonmanoeuversauto‐negotiations,
rejectinganaxiomofhavingacentralcontrol point,
emerged just recently. In papers (Hornauer, 2013;
HornauerandHahn,2013)adistributedsystemhas
been proposed in which ships negotiate their
345
manoeuvers. The authors plan to base the
optimization core on evolutionary sets of safe
trajectories,followingthepaper(Szlapczynski,2010).
Their proposal assumes that there is a distinction
between active ships, actively contributing to the
negotiation process, and inactive (rouge) ships. The
latter for various reasons (e.g. no proper
hardware/software
 equipment), do not assist in the
processanddo notfollowsystem recommendations
towards planned maneuverings. The system takes
into account presence of the inactive ships by
predicting (based on historic data) their future
movements.
Quite different assumptions lay at the basis of
CANFO system proposed by Hu et al.
(2008). Here
auto‐negotiation is only between two ships and
optimization core is reduced to a deterministic
method of manoeuver determination. The main
advantage of the proposal is a detailed negotiation
protocoldescription,basedonpre‐definedpreference
set. On the other hand, utilized straightforward
calculusmakesthemethodnotapplicable
incaseof
an encounter with more than two ships.What is
more, the authors assume that ship navigators
sometimeswouldrathergoforanillegal(according
toCOLREGS)maneuvering, if only economicfactor
(e.g. a way loss) would justify that. Such approach
hardlyisacceptableinpractice.
This paper
 aims at presenting the author’s
proposal of a manoeuver auto‐negotiation system,
deriving the advantages of the already known
solutionsandtryingtoavoidtheirdisadvantagesas
well as the known pitfalls. It is focused mainly on
shipsβ€™ξˆ±initializationinthesystemanddatagathering.
Itisfollowingauthor’sdraft
proposalof thesystem
presentedin(Szlapczynska,2014).
3 GENERALDESCRIPTIONOFMANOEUVER
AUTO‐NEGOTIATIONSYSTEM
Themainideaoftheproposedsystemistocombinea
manoeuvercontrol thatis independentofany outer
objects (such as e.g. a VTS station) with a semi‐
distributed control by the ships in
 the encounter.
Unlike previous manoeuver auto‐negotiation
proposals,theonecallsforcontrolflowinwhichone
oftheshipsintheencounterisaleadershipandall
the others are ships‐participants. The leader is
responsible for gathering data, determination and
optimization of manoeuvers, finally distribution of
the
results.Thispattern,calledheresemi‐distributed
one,asopposedtoadistributedone(inwhichallthe
shipsequallytrytocontributetothefinalresult),is
about to overcome the well‐known problems of
distributedsystem,suchasaccessingsharedmemory
ordeadlocks.

Figure1.Proposedmanoeuverauto‐negotiationsystem
Flow of the proposed system, presented in
Figure1, reflects the previously presented one in
(SzΕ‚apczynska, 2014). The following elements of the
systemhavebeendistinguishedthere:
1 Initializationξˆ±β€“ξˆ±atthisstageshipscomeforwardto
beincludedintheauto‐negotiation.Theshipthat
initializes the process becomes
 a leader, all the
othersbecomeships‐participants.
2 Datagatheringξˆ±β€“ξˆ±alltheshipsreporttotheleader
theirbasicmovementparameterssuchascurrent
speed & course, initial and goal positions, etc.
Moreover,eachshipwilltransmitaninitialsetof
possible / forbidden courses (or possibly courses
& speeds). Both initializationand data gathering
constitute data acquisition stage, which is
elaboratedinthenextsection.
3 Manoeuver negotiation β€“ξˆ± here preferences
towards manoeuver possibilities and conditions
(e.g. circulation radiuses) are exchanged. A
detailedprotocoldescribingthenegotiationsisto
beprepared.
4 Trajectory determination and optimization β€“ξˆ±
collected
 input data (based on original plans
reported by all the ships, including also shipsβ€™ξˆ±
preferences towards maneuvering possibilities
and conditions) trigger the optimization process.
Itsearchesforanoptimal(orsub‐optimalrather)
setoftrajectoriesforalltheships.Itispossibleto
applyhereamultiobjectivesearchpattern,
thusa
search for multiple goals is possible (e.g. the
smallest way loss and the highest security of
traveling).Oneofthekeyconstraintshereisthat
optimization procedure must be executed on a
stricttimeregime,possiblyinlessthan1minute.
That forces utilization of heuristic approach to
optimization.
 Further research on a heuristic
methodsuitedfortheproblemisrequired.
5 Resultsdistributionξˆ±β€“ξˆ±thelaststageintheprocess,
inwhichfinal resultsof computations(thesetof
trajectories)isdistributedamongtheshipsinthe
encounter. As the data is sent (via the selected
communication link)
as β€œsuggested
maneuvering”, the system expects replies from
each ship (sent manually by the navigator)
confirming agreement for following the
suggestions.Onceallconfirmationsaregathered,
the results obtain a new status of β€œaccepted
maneuvering”. The β€œsuggestedβ€ξˆ± status remains
unchanged in all other cases. No automatic
346
executionoftheacceptedmanoeuversisplanned,
it will remain in sole responsibility of the
navigators.Adetailedprotocoldescribingresults
distributionistobeprepared.
The system would be able to work in various
modes,dependingonthesituationandgeographical
localization of the encounter. These modes would
include
thefollowing(asnon‐excludingitems):
ο€­ openorrestrictedwatersmode,
ο€­ waters including / not including TSS (Traffic
SeparationSchemes)regulations;incaseofaTSS
Rule10will betakenintoaccount inmanoeuver
determination&optimization,
ο€­ forrestrictedwatersonly:watersunderVTS/no
VTScontrol,
ο€­ for good visibility (Rules 11 β€“ξˆ± 18 taken into
account)/restrictedvisibility(Rule19takeninto
account).
4 DATAACQUISITIONINTHESYSTEM
The first issue to be resolved when discussing data
acquisition in the system is which communication
channelshouldbeestablishedtoassurefast,reliable

and secure data exchange. As presented in
(Szlapczynska, 2014) there are mostly two
possibilities:
ο€­ AISβ€ξˆ±basedcommunicationbyutilizationofASM
messagebroadcast,
ο€­ wireless communication (β€œWifi on seaβ€ξˆ± working
inpeer‐to‐peermode).
The key advantage of having the AIS‐based
channel is that its equipment, due
to international
regulations,isalreadypresentonmostofvessels(but
e.g. small vessels like fishery boats are still not
obligedtohaveAISonboard).However,thiskindof
communication relies on broadcasting messages
throughanunsecuredchannel.Thisfact,asreported
by(WWW_AIS,2015),maycausethefollowing:
ο€­
fakeAISsignals(fromnon‐existingvessels)could
be transmitted, mostly to interrupt or collapse
systemsgatheringAISdata,
ο€­ AIS signals from existing vessels could be
amended e.g. by sending modified ship position
and/orcourse, which couldresultin initiationof
impropercollisionavoidanceactionsbytheother
vessels.
Thusallmayleadtoashipcollisione.g.
provokedonpurposebypirates.
Having the above in mind one should be aware
that no classified information should be exchanged
through the AIS channel, as it is defined at the
moment(thereareplans,however,torewritetheAIS
specificationand
thusinfuturetoincreasesafetyof
the connections). The problem with exchanging
classified information remains valid also for the
purposeoftheauto‐negotiationsystem.Ontheother
hand,thewirelessapproachwithTCP/IParchitecture
appliedisable to handle secure data exchange (e.g.
viadataencryption).Itsdisadvantage,
however,isa
necessity of having additional, quite expensive and
notwidespread,hardwareequipment. Thusthere is
no possibility to use this way of communication to
indicateship’swilltojointhesystem.Thereforeitis
recommended to initialize the auto‐negotiation
system via the AIS channel, but continue further
communication
 by establishing a secure wireless
peer‐to‐peerconnection.
The data acquisition element of the manoeuver
auto‐negotiation system may be split into two
separateitems,namely:
ο€­ initialization, when ships in an encounter that
would like to utilize the system set up a
negotiationgroup,
ο€­ datagatheringfrom
allships inthegroup, to be
used further by the trajectory determination &
optimizationcoreofthesystem.
The following subsections describe the
abovementionedelementsofthesystem.
4.1 Initialization
The main goal here is to set up a group of ships
interested in participation in the auto‐negotiation
system
andto select amongthema group’s leading
ship(aleader,theshipthatlaterwouldperformmost
ofthecomputationaltasks).Variousapproachesexist
tohandlesuchsituation.Asproposedpreviouslyby
theauthorin (Szlapczynska, 2014), the initialization
process (referred to as registration) would be
organizedasfollows.
Eachship,notinanencounter
currently, periodically sends an AIS message
broadcasting her will to become a leader of
maneuver negotiation. If two or more such ships
meet on a fixed area, e.g. an arena with 10Nm
diameter,thefirstonethatgetsintotheareabecomes
the leader and
 all the other become ships‐
participants. This approach in practice, however, is
limitedtofixedareas,e.g.precautionaryareas. One
also should have in mind that any COLREGS‐
compliant maneuver negotiation would be useful
only for more than a simple ship‐to‐ship encounter
(for two ships COLREGS state clearly
what is the
required maneuvering). Moreover, in some cases of
multiple ship encounter the leader would have
significantly smaller computational powers
(necessarytoperformmanoeuverdeterminationand
optimization)thantheotherparticipants,whichmay
leadtounacceptablelongresultsβ€™ξˆ±awaitingtime.
Toovercometheseproblemsadifferentapproach
toinitializationis
proposedhere.Lettheshipthatis
the most interested in manoeuver negotiation (i.e.
havingthebiggestnumberofconstraintsorshipsto
whom she is obliged to give way) to initialize the
negotiationbysendingtheAISmessagejustonce(or
eventuallyrepeatedbylimitednumberoftimes).The
process of sending the message could be triggered
eithermanuallybythenavigatororautomaticallyby
the system in case the Target Tracking (i.e. ARPA)
reports e.g. more than two other ships in possible
encounter with the own ship. All the ships (in AIS
range)thatreceivethemessage,thatwould
havethe
system installed and willing to participate, would
send back information β€œI’m in”, becoming
automatically ships‐participants. The othersξˆ±β€ξˆ±that
either would send β€œI’m NOT inβ€ξˆ± (having no such
system or not willing to participate) or not sending
any messageξˆ±β€ξˆ±would not become participants.
However,theirpresencewouldbe
noted(aspassive
ships) and monitored by the leader, further taken
intoaccountinallfuturecomputations.
347
4.2 Datagathering
Afterfinalizationoftheinitializationprocess,whena
group of ships‐participants, including a leader, is
established, every communication should be
performedonlyviaasecureconnection.Asdescribed
earlieritcouldbeachievedbyutilizationofwireless
peer‐to‐peer communication. As for now it is

assumed that such connection is available and
alreadysetupforthegroupofnegotiatingships.
In the next step all the participants should send
the leader information including their motion
parameters(e.g.currentcourse,speed,etc.).Basedon
theinformation,laterontheleaderwouldbeableto
determine
required and optimized maneuvering.
Obviously,thepassiveshipsbeing invicinityofthe
encounter would not send any information to the
leader.Thus, introducinga mechanismto overcome
this difficulty is necessary to obtain safe resulting
collisionavoidanceactions.
The author thus proposes that the participants,
instead of pure motion parameters,
 would send to
the leader information packs, so‐called here
β€œManoeuver Availability Arraysβ€ξˆ± (MAA). A MAA
sent by a participant would consist of ranges of
courses(inanextendedversion:coursesandspeeds)
that would not result in a collision situation
(according to COLREGS rules) with any of the
nearby
ships.Thatwouldalsoincludeallthepassive
ships being nearby the participant, as well as any
other ship being out of the negotiation scope (not
visiblebythesystem,thusoutsideit)ξˆ±β€ξˆ±notactivenor
passiveonetothesystem.Thiswayeachactiveship
would introduce to the system
 additional
information about collision threats in the near
vicinity.TheMAAs could be determined (inalmost
real‐time fashion) in its basic form by utilization of
DCPA & TCPA values or in extended version by
utilizationofFCTPAmethod.
An example of MAAs utilization (in its basic
form)ispresented
inFigure2.Therearesevenships,
but only three of them are active ones in the auto‐
negotiationsystem(Ship1istheleader,Ships2&3
are participants). Within the range of the system
there is also Ship 4, but due to lack of proper
equipmentshestays
passiveanddonotcontributeto
thenegotiations(norsendsanyinformations).Ship5
is outside the scope of the system, but in near
proximitytothe Ship3.Similarly, Ship 6 is outside
butneartotheShip1andShip7isoutsidebutnear
totheShip
2.Thered&greencirclesaroundShips1‐
3 illustrate their MAAs determined by taking into
account all vessels nearby the considered ship. The
red MAA regions depict either forbidden (due to
COLREGSrules)orundesirednewcourses,whilethe
greenonesξˆ±β€“ξˆ± ranges of possible newcourses.Inthe

next process step (negotiation of maneuvers) the
greenandredareasmaybeslightlychanged,asthe
ships would agree on some tolerance of the own
undesired courses. Finally, the determination and
optimizationpartwilltakecareoffindingthebestset
ofmaneuveringforShips1‐3takinginto
accountthe
agreed(negotiated)possiblecourses(thegreenMAA
areas). Further research thus will focus on the
negotiation, optimization and resultsβ€™ξˆ± distribution
elementsoftheproposedauto‐negotiationsystem.



Figure2.AsamplecollisionsituationwithMAAsdepictedforactiveships(Ship1ξˆ±β€“ξˆ±3)inthemanoeuverauto‐negotiation
system
348
5 SUMMARY
Themanoeuverauto‐negotiationapproachoffersnot
only obvious improvement in automation of data
exchange between ships in an encounter situation,
but also may result in increased level of safety.
Primarily, the issue of human error in
communicationiseliminated in this case. It is often
that nowadays
 on international waters navigators
thatcommunicatewitheachother(eitherdirectlyor
via VTS) are not English native speakers. It may
result, especially in a stressful situation of an
encounter, that some language misunderstandings
would cause a collision. However, when designing
such a manoeuver auto‐negotiationsystem, one has
to
be also aware of COLREGS regulations. Only
systemsobeyingtheseregulationsareabletoassure
propergloballevelofsafety.
The proposal of a manoeuver auto‐negotiation
system presented in this paper is oriented at
designing flexible and robust procedures of
automatic ship communication while assuring
compliance with COLREGS. After completing
 the
nextstepsoftheresearch(designingthenegotiation,
optimizationanddistributionelementsofthesystem)
author aims at developing a system applicable in
practiceintothenavigationalworld.
REFERENCES
BrckoT.,SvetakJ.,FuzzyReasoningasaBaseforCollision
Avoidance Decision Support System. Promet β€“ξˆ± Traffic
&Transportation,Vol.25,No.6,str.555‐564,2013.
Cheng, X., Liu, Z., Trajectory Optimization for Ship
NavigationSafetyUsingGeneticAnnealingAlgorithm.
ICNC2007.Third InternationalConferenceonNatural
Computation.vol.
4,str.385ξˆ±β€“ξˆ±392,2007.
COLREGS,ConventionontheInternationalRegulationsfor
Preventing Collisions at Sea. International Maritime
Organization,1972(withamendmentsonDec2009).
HornauerS.,DecentralisedCollisionAvoidanceinaSemi‐
collaborative Multi‐agent System. Multiagent System
Technologies, Lecture Notes in Computer Science,
Volume8076,str.412‐
415,Springer,2013.
Hornauer S., Hahn A., Towards Marine Collision
Avoidance Based on Automatic Route Exchange.
Control Applications in Marine Systems, Volume 9,
Part1,str.103‐107,2013.
Hu Q., Yang C., Chen H., Xiao B., Planned Route Based
Negotiation for Collision Avoidance Between Vessels.
TransNav, the International Journal on
 Marine
Navigation and Safety of Sea Transportation, Vol. 2,
No.4,str.363‐368,GdyniaMaritimeUniversity,2008.
Ito,M.,Feifei Z., Yoshida,N., Collision avoidancecontrol
ofshipwithgeneticalgorithm.Proceedingsofthe1999
IEEEInternationalConferenceonControlApplications,
vol.2,str.1791ξˆ±β€“ξˆ±1796,1999.
Kolendo
P.,Śmierzchalski R., Jaworski B., Experimental
Research on Evolutionary Path Planning Algorithm
with Fitness Function Scaling for Collision Scenarios.
TransNav, the International Journal on Marine
Navigation and Safety of Sea Transportation, Vol. 5,
No.4,str.489‐495,GdyniaMaritimeUniversity,2011.
Lazarowska A., Decision support system for collision
avoidanceat
sea.PolishMaritimeResearch.Volume19,
IssueSpecial,str.19–24,DeGruyter,2012.
Lenart A.S. 1982. Collision threat parameters for a new
radar display and plot technique, The Journal of
Navigationvol.36:pp.404‐410.
Lisowski J., (1985). The analysis of differential game
modelsofsafeshipcontrolprocess.
JournalofShanghai
MaritimeInstitute,Volume6,No1,25‐38.
Pietrzykowski, Z.Magaj,J.Chomski, J., A navigational
decision support system for sea‐going ships. Pomiary,
Automatyka, Kontrola, R. 55, nr 10, str.860‐863,
WydawnictwoPAK,2009.
StatherosT.,HowellsG.,McDonaldMaierK.,Autonomous
Ship Collision Avoidance Navigation
 Concepts,
Technologies and Techniques. The Journal of
Navigation, 61(01), str. 129‐142, Cambridge University
Press,2008.
Smierzchalski,R.,Evolutionarytrajectoryplanningofships
in navigation traffic areas. Journal of Marine Science
andTechnology,vol.4,Issue1,str.1–6,Springer,1999.
Szlapczynska J.: Propozycja systemu auto‐negocjacji
manewrΓ³w statkΓ³w korzystajΔ…
cego z metod
optymalizacji wielokryterialnej oraz Matematycznej
TeoriiEwidencji (inPolish), Logistyka vol. 6/2014, pp.
10375‐10384,2014.
Szlapczynski R.: Fuzzy Collision Threat Parameters Area
(FCTPA) β€“ξˆ± A New Display Proposal. TransNav, the
InternationalJournalonMarineNavigationandSafety
ofSeaTransportation,Vol.2,No.4,pp.359‐362,2008

Szlapczynski R., Solving Multi‐Ship Encounter Situations
by Evolutionary Sets of Cooperating Trajectories.
TransNav, the International Journal on Marine
Navigation and Safety of Sea Transportation, Vol. 4,
No.2,str.185‐190,GdyniaMaritimeUniversity,2010.
Szlapczynski R., Szlapczynska J., On Evolutionary
ComputinginMulti‐ShipTrajectoryPlanning.Applied
Intelligence,
Volume37,Issue2,str.155‐174,Springer,
2012.
Tam,C.,Bucknall,R.,Path‐planningalgorithmforshipsin
close‐range encounters. Journal of Marine Science and
Technology,vol.15,Issue4,str.395‐407,Springer,2010.
Tsou, M. C., Hsueh, C. K. The study of ship collision
avoidance route planning by
 ant colony algorithm.
Journalof Marine Science andTechnology, 18(5), 746–
756,Springer,2010.
Zeng X., Evolution of the safe path for ship navigation.
AppliedArtificialIntelligence.17,str.87–104,Taylor&
Francis,2003.
Zak B., The problems of collision avoidance at sea in the
formulationofcomplexmotionprinciples,Int.
J.Appl.
Math.Comput.Sci.,2004,Vol.14,No.4,pp.503–514.
WWW_AIS, http://www.aisreporter.com/?news=ais‐
vulnerabilities‐subject‐of‐scientific‐research, web page
accessedon2015.02.01,2015.

