1350
Geomatics, vol. 2, no. 4, pp. 486–498, 2022, doi:
10.3390/geomatics2040026.
[9] M. Specht et al., “Analysis of Methods for Determining
Shallow Waterbody Depths Based on Images Taken by
Unmanned Aerial Vehicles,” Sensors, vol. 22, no. 5, Art.
no. 1844, Feb. 2022, doi: 10.3390/s22051844.
[10] A. Jaszcz, M. Włodarczyk-Sielicka, A. Stateczny, D.
Połap, and I. Garczyńska, "Automated shoreline
segmentation in satellite imagery using USV
measurements," Remote Sensing, vol. 16, no. 24, p. 4457,
2024, doi: 10.3390/rs16234457.
[11] K. Prokop, D. Połap, M. Włodarczyk-Sielicka, K. Połap,
A. Jaszcz, and A. Stateczny, "Automated shoreline
extraction process for unmanned vehicles via U-net with
heuristic algorithm," Alexandria Engineering Journal,
vol. 102, pp. 108–118, 2024, doi: 10.1016/j.aej.2024.05.104.
K. Prokop, D. Połap, M. Włodarczyk-Sielicka, K. Połap, A.
Jaszcz, and A. Stateczny, "Automated shoreline extraction
process for unmanned vehicles via U-net with heuristic
algorithm," Alexandria Engineering Journal, vol. 102, pp.
108–118, 2024, doi: 10.1016/j.aej.2024.05.104.
[12] N. Thomas, B. Lee, O. Coutts, P. Bunting, D. Lagomasino,
and L. Fatoyinbo, “A purely spaceborne open source
approach for regional bathymetry mapping,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 60,
pp. 1–13, 2022, Art. no. 4708109, doi:
10.1109/TGRS.2022.3192825.
[13] I. Garczyńska-Cyprysiak, W. Kazimierski, and M.
Włodarczyk-Sielicka, "Neural approach to coordinate
transformation for LiDAR–camera data fusion in coastal
observation," Sensors, vol. 24, no. 20, p. 6766, 2024, doi:
10.3390/s24206766.
[14] J. Li and A. D. Heap, “Spatial interpolation methods
applied in the environmental sciences: A review,”
Environmental Modelling & Software, vol. 53, pp. 173–
189, 2014, doi: 10.1016/j.envsoft.2013.12.008.
[15] R. Gradka and A. Kwinta, “A short review of
interpolation methods used for terrain modeling,”
Geomatics, Landmanagement and Landscape, vol. 4, pp.
29–47, 2018, doi: 10.15576/GLL/2018.4.29.
[16] W. Lu and D. W. S. Wong, “An Adaptive Inverse-
Distance Weighting Spatial Interpolation Technique,”
Computers & Geosciences, vol. 34, no. 9, pp. 1044–1055,
Sept. 2008. doi: 10.1016/j.cageo.2007.07.010
[17] S. Salekin, J. H. Burgess, J. Morgenroth, E. G. Mason, and
D. F. Meason, “A Comparative Study of Three Non-
Geostatistical Methods for Optimising Digital Elevation
Model Interpolation,” ISPRS International Journal of Geo-
Information, vol. 7, no. 8, p. 300, Jul. 2018. doi:
10.3390/ijgi7080300
[18] N. A. C. Cressie, “The Origins of Kriging,” Mathematical
Geology, vol. 22, no. 3, pp. 239–252, Apr. 1990, doi:
10.1007/BF00889887.
[19] A. G. Journel and C. J. Huijbregts, Mining Geostatistics,
London: Academic Press, 1978.
[20] P. Biernacik, W. Kazimierski, and M. Włodarczyk-
Sielicka, "Comparative analysis of selected geostatistical
methods for bottom surface modeling," Sensors, vol. 23,
no. 8, p. 3941, 2023, doi: 10.3390/s23083941.
[21] M. Kholghi and S. M. Hosseini, “Comparison of
Groundwater Level Estimation Using Neuro-fuzzy and
Ordinary Kriging,” Environmental Modeling &
Assessment, vol. 14, no. 6, pp. 729–737, Dec. 2009, doi:
10.1007/s10666-008-9174-2.
[22] C. Du, “An interpolation method for grid-based terrain
modeling,” The Computer Journal, vol. 39, no. 10, pp.
837–843, 1996, doi: 10.1093/comjnl/39.10.837.
[23] R. Freedman, “New approach for solving inverse
problems encountered in well-logging and geophysical
applications,” Petrophysics, vol. 47, no. 2, pp. 93–111,
Apr. 2006.
[24] Y.-L. Zou, F.-L. Hu, C.-C. Zhou, C.-L. Li, and K.-J. Dunn,
“Analysis of radial basis function interpolation
approach,” Appl. Geophys., vol. 10, no. 4, pp. 397–410,
Dec. 2013, doi: 10.1007/s11770-013-0407-z.
[25] W. Keller and A. Borkowski, “Thin plate spline
interpolation,” J. Geod., vol. 93, no. 8, pp. 1251–1269, Aug.
2019, doi: 10.1007/s00190-019-01240-2.
[26] D. F. Specht, "A general regression neural network,"
IEEE Transactions on Neural Networks, vol. 2, no. 6, pp.
568–576, 1991.
[27] H. K. Ghritlahre and R. K. Prasad, "Exergetic
performance prediction of solar air heater using MLP,
GRNN and RBF models of artificial neural network
technique," Journal of Environmental Management, vol.
223, pp. 566–575, 2018, doi:
10.1016/j.jenvman.2018.06.033.
[28] S. Liu, Y. Gao, W. Zheng, and X. Li, “Performance of two
neural network models in bathymetry,” Remote Sensing
Letters, vol. 6, no. 4, pp. 321–330, 2015, doi:
10.1080/2150704X.2015.1034885.
[29] Z. Duan, S. Chu, L. Cheng, C. Ji, M. Li, and W. Shen,
“Satellite-derived bathymetry using Landsat-8 and
Sentinel-2A images: assessment of atmospheric
correction algorithms and depth derivation models in
shallow waters,” Optics Express, vol. 30, no. 3, pp. 3238–
3261, 2022, doi: 10.1364/OE.444557.
[30] A. Misra, Z. Vojinovic, B. Ramakrishnan, A. Luijendijk,
and R. Ranasinghe, “Shallow water bathymetry mapping
using Support Vector Machine (SVM) technique and
multispectral imagery,” International Journal of Remote
Sensing, vol. 39, no. 14, pp. 4739–4765, 2018, doi:
10.1080/01431161.2017.1421796.
[31] J. J. Roberts, B. D. Best, D. C. Dunn, E. A. Treml, and P.
N. Halpin, “Marine Geospatial Ecology Tools: An
integrated framework for ecological geoprocessing with
ArcGIS, Python, R, MATLAB, and C++,” Environmental
Modelling & Software, vol. 25, no. 10, pp. 1197–1207,
2010, doi: 10.1016/j.envsoft.2010.03.029.
[32] A. A. Korosov, M. W. Hansen, K.-F. Dagestad, A.
Yamakawa, A. Vines, and M. Riechert, “Nansat: a
scientist-orientated Python package for geospatial data
processing,” Journal of Open Research Software, vol. 4,
2016, Art. no. e39, doi: 10.5334/jors.120.
[33] S. J. Rey, L. Anselin, X. Li, R. Pahle, J. Laura, W. Li, and
J. Koschinsky, “Open geospatial analytics with PySAL,”
ISPRS Int. J. Geo-Inf., vol. 4, no. 2, pp. 815–836, 2015, doi:
10.3390/ijgi4020815.
[34] B. Murphy, S. Müller, and R. Yurchak, GeoStat-
framework/PyKrige v1.5.1 (Version v1.5.1) [Computer
software], Zenodo, Aug. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3991907
[35] P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020. [Online]. Available:
https://www.nature.com/articles/s41592-019-0686-2
[36] F. Pedregosa et al., “Scikit-learn: Machine Learning in
Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011. [Online]. Available:
https://www.jmlr.org/papers/volume12/pedregosa11a/p
edregosa11a.pdf
[37] H. Junninen, H. Niska, K. Tuppurainen, J. Ruuskanen,
and M. Kolehmainen, "Methods for imputation of
missing values in air quality data sets," Atmospheric
Environment, vol. 38, no. 18, pp. 2895–2907, Jun. 2004,
doi: 10.1016/j.atmosenv.2004.02.026.
[38] J. Lubczonek, W. Kazimierski, G. Zaniewicz, and M.
Lacka, "Methodology for combining data acquired by
unmanned surface and aerial vehicles to create digital
bathymetric models in shallow and ultra-shallow
waters," Remote Sensing, vol. 14, no. 1, p. 105, 2022, doi:
10.3390/rs14010105.