1140
Transactions of the Society of Naval Architects and
Marine Engineers 2011, 119, 265–298.
[7] Mahmoud, M.R.; Roushdi, M.; Aboelkhear, M. Potential
benefits of climate change on navigation in the northern
sea route by 2050. Sci Rep 2024, 14, 2771.
https://doi.org/10.1038/s41598-024-53308-5.
[8] Porathe, T. Ice Navigation in Arctic Offshore Wind Parks:
Traffic Coordination Using Route Exchange and Moving
Havens. Eng. Proc. 2023, 54, 55.
https://doi.org/10.3390/ENC2023-15462.
[9] Gravesen, H.; Jørgensen, L.B.; Høyland, K.V.; Bicker, S. Ice
drift and ice action on offshore wind farm structures.
Proceedings of the 27th International Conference on Port
and Ocean Engineering under Arctic Conditions,
Glasgow, United Kingdom, 12-16 June, 2023.
[10] EEDI, 2022. Energy Efficiency Measures. Available
online:
https://www.imo.org/en/OurWork/Environment/Pages/
Technical-andOperational-Measures.aspx (accessed on
17 March 2022).
[11] Tadros, M.; Ventura, M.; Guedes Soares, C. Review of
current regulations, available technologies, and future
trends in the green shipping industry. Ocean Engineering
2023, 280, 114670.
https://doi.org/10.1016/j.oceaneng.2023.114670.
[12] Nokelainen, A.; Salmi, P.; Suojanen, R.A. Suomen
talvimerenkulun kehittäminen, Jäänmurtajatarpeen
simulointityökalu. Merenkulkulaitos: Helsinki, Finland,
2004.
[13] Lindeberg, M.; Kujala, P.; Toivola, J.; Niemelä, H. Real-
time winter traffic simulation tool – based on a
deterministic model. Scientific Journals of the Maritime
University of Szczecin 2015. 42 (114), 118-124.
[14] Bergström, M.; Kujala, P. Simulation-Based Assessment
of the Operational Performance of the Finnish–Swedish
Winter Navigation System. Applied Sciences 2020. 10
(19): 6747. doi:10.3390/app10196747.
[15] Kondratenko A. A.; Kulkarni K.; Li F.; Musharraf M.;
Hirdaris S.; Kujala, P. Decarbonizing shipping in ice by
intelligent icebreaking assistance: A case study of the
Finnish-Swedish winter navigation system. Ocean
Engineering 2023, 286, 115652
[16] Lu, L.; Kondratenko, A.; Kulkarni, K.; Li F.; Kujala, P.;
Musharraf M. An Investigation of Winter Navigation and
Icebreaker Needs in the Ice-Infested Water: The Gulf of
Finland and the Gulf of Riga. Proceedings of the OMAE
2024 Conference, Singapore, June 9 - 14, 2024.
OMAE2024-127955.
[17] Winmos II, 2021. Developing the Maritime Winter
Navigation Systems, Winmos II. Available online:
http://www.winmos.eu/ (accessed on 4 October 2021).
[18] Orädd H. Evolving winter navigation in the Baltic. Arctic
Passion Seminar 2024, Helsinki, February 15, 2024.
https://akerarctic.fi/app/uploads/2024/02/4-Helena-
Oradd_Evolving-winter-navigation-in-the-Baltic.pdf.
[19] Aker Arctic Technology. Safe winter traffic on the Baltic
Sea. Helsinki, Finland, 2018.
https://akerarctic.fi/app/uploads/2019/05/arctic_passion_
news_1_2018_Safe-winter-traffic-on-the-Baltic-Sea.pdf.
[20] Kulkarni, K.; Kujala, P.; Musharraf, M.; Rainio, I.
Simulation Tool for Winter Navigation Decision Support
in the Baltic Sea. Appl. Sci. 2022, 12, 7568.
https://doi.org/10.3390/app12157568.
[21] IMO. MEPC.1/Circ.684) 2009 Guidelines for Voluntary
Use of The Ship Energy Efficiency Operational Indicator
(EEOI); International Maritime Organization: London,
UK, 2009; pp. 1–10.
[22] IMO. Resolution MEPC.281(70) 2016 Amendments to
The 2014 Guidelines on The Method of Calculation of The
Attained Energy Efficiency Design Index (EEDI) for New
Ships; International Maritime Organization: London, UK,
2016; pp. 1–10.
[23] IMO. Resolution MEPC.308(73) 2018 Guidelines on the
Method of Calculation of the Attained Energy;
International Maritime Organization: London, UK, 2018;
pp. 1–36.
[24] İnal Ö. B.; Deniz C. Emission Analysis of LNG Fuelled
Molten Carbonate Fuel Cell System for a Chemical
Tanker Ship: A Case Study. Mar. Sci. Tech. Bull 2021,
10(2), 118-33.
[25] Roh, G.; Kim, H.; Jeon, H.; Yoon, K. Fuel Consumption
and CO2 Emission Reductions of Ships Powered by a
Fuel-Cell-Based Hybrid Power Source. J. Mar. Sci. Eng.
2019, 7, 230. https://doi.org/10.3390/jmse7070230.
[26] Cepowski, T.; Chorab, P. The Use of Artificial Neural
Networks to Determine the Engine Power and Fuel
Consumption of Modern Bulk Carriers, Tankers and
Container Ships. Energies 2021, 14, 4827.
https://doi.org/10.3390/en14164827.
[27] Central Marine Research & Design Institute. Technical
and operational requirements to select optimal power
generators of maritime cargo ships. RD. 31.03.41-90.
Leningrad, Soviet Union, 1990.
[28] Karvonen, J.; Simila, M.; Hallikainen M.; Haas, C.
Estimation of equivalent deformed ice thickness from
Baltic Sea ice SAR imagery. Proceedings. 2005 IEEE
International Geoscience and Remote Sensing
Symposium, Seoul, Korea (South), 2005, pp. 5165-5167.
https://doi.org/10.1109/IGARSS.2005.1526846.
[29] Milaković, A.; Schütz, P.; Piehl, H.; Ehlers, S. A method
for estimation of equivalent-volume ice thickness based
on WMO egg code in absence of ridging parameters. Cold
Regions Science and Technology 2018, 155, 381-395.
https://doi.org/10.1016/j.coldregions.2018.08.017.
[30] Dong, B.; Jiang, X.; Xiang, Z. Calculation model and
experimental verification of equivalent ice thickness on
overhead lines with tangent tower considering ice and
wind loads. Cold Regions Science and Technology 2022,
200, 103588.
https://doi.org/10.1016/j.coldregions.2022.103588.
[31] Jeong, S.; Choi, K.; Kim, H. Investigation of ship
resistance characteristics under pack ice conditions.
Ocean Engineering 2021, 219, 108264.
https://doi.org/10.1016/j.oceaneng.2020.108264.
[32] Guo, C.; Zhang, C.; Feng, F.; Wang, C.; Wang, C.
Predicting ship ramming performance in thick level ice
via experiments. Ships and Offshore Structures 2021,
17(10), 2141–2149.
https://doi.org/10.1080/17445302.2021.1979917.
[33] Sun, J.; Huang, Y. Experimental Study on the Ice
Resistance of a Naval Surface Ship with a Non-
Icebreaking Bow. J. Mar. Sci. Eng. 2023, 11, 1518.
https://doi.org/10.3390/jmse11081518.
[34] Xue, Y.; Zhong, K.; Ni, B.; Li, Z.; Bergström, M.;
Ringsberg, J.; Huang, L. A combined experimental and
numerical approach to predict ship resistance and power
demand in broken ice. Ocean Engineering 2024, 292,
116476. https://doi.org/10.1016/j.oceaneng.2023.116476.
[35] Huang, Y.; Huang, S.; Sun, J. Experiments on navigating
resistance of an icebreaker in snow covered level ice. Cold
Regions Science and Technology 2018, 152, 1-14.
https://doi.org/10.1016/j.coldregions.2018.04.0070