1039 
[7] Hamrock,  B.J.;  Schmid,  S.R.;  &  Jacobson,  B.O. 
Fundamentals of Fluid Film Lubrication (2nd ed.). CRC 
Press. 2004. https://doi.org/10.1201/9780203021187. 
[8] Litwin,  W. Marine Propeller  Shaft Bearings under  Low-
Speed  Conditions:  Water  vs.  Oil  Lubrication.  Tribology 
Transactions,  2019,  62(5),  839–849. 
https://doi.org/10.1080/10402004.2019.1625991   
[9]   He, T.; Zou, D.; Lu, X.; Guo, Y.; Wang, Z.; Li, W. Mixed-
lubrication  analysis  of  marine  stern  tube  bearing 
considering  bending  deformation  of  stern  shaft  and 
cavitation.  Tribology  International,  2014.  73,  108-116. 
https://doi.org/10.1016/j.triboint.2014.01.013. 
[10] Kryvyi, M.O.; Sagin, S.V. Determination of the influence 
of  properties  of  engine  oils  on  pressure  distribution  in 
friction pairs of marine diesel engines. Ship power plants. 
2021. 43, 18-24. DOI:10.31653/smf343.2021.18-24. 
[11] Sagin,  S.V.;  Kryvyi,  M.O.  Determination  of  pressure 
distribution in the nonnewtonian oil layer in ship energy 
plant. Herald of the Odessa national maritime university. 
2020, 2(62), 160-170. DOI 10.47049/2226-1893-2020-1-160-
170. 
[12] Sagin, S.V.; Kryvyi, M.O. Calculation of contact pressure 
and contact zone in friction pairs of marine diesel engines. 
Automation  of  ship  technical  facilities.  2021,  27,  84-92. 
DOI: 10.31653/1819-3293-2021-1-27-84-92S   
[13] Kryvyi  M.O.  Determination  of  the  specific  angles  of 
friction  pairs  of  ship  power  plants.  Ship  power  plants. 
2023. 47, 32-45. DOI: 10.31653/smf47.2023. 32-45.   
[14] Kryvyi, O.; Miyusov, M.V.; Kryvyi, M. Construction and 
Analysis of New Mathematical Models of the Operation 
of  Ship  Propellers  in  Different  Maneuvering  Modes. 
Trans  Nav,  the  International  Journal  on  Marine 
Navigation and Safety of Sea Transportation. 2023, 17(1), 
853-864. doi:10.12716/1001.17.01.09. 
[15] Kryvyi,  O.;  Miyusov,  M.  V.;  Kryvyi  M.  Analysis  of 
Known and Construction of New Mathematical Models 
of  Forces  on  a  Ship's  Rudder  in  an  Unbounded  Flow. 
Trans  Nav,  the  International  Journal  on  Marine 
Navigation and Safety of Sea Transportation. 2023, 17(4), 
831-839. DOI:10.12716/1001.17.04.09. 
[16] Jao, TC.; Verhelst, A. Marine Engine Oils. In: Wang, Q.J., 
Chung,  YW.  (eds)  Encyclopedia  of  Tribology.  Springer, 
Boston,  MA.  2013.  https://doi.org/10.1007/978-0-387-
92897-5_952. 
[17] Habchi, W.; Bair, S. Quantifying the inlet pressure and 
shear  stress  of  elastohydrodynamic  lubrication. 
Tribology  Int.  2023,  182(8):108351. 
https://doi.org/10.1016/j. triboint.2023.108351   
[18] van  Leeuwen,  H.  The  determination  of  the  pressure     
viscosity  coefficient  of  a  lubricant  through  an  accurate 
film  thickness  formula  and  accurate  film  thickness 
measurements.  Proc.  of  the  I.  Mech.  E,  Part  J:  of 
Engineering  Tribology.  2009,  223(8),  1143-1163. 
doi:10.1243/13506501JET504   
[19] van  Leeuwen,  H.  The  determination  of  the  pressure–
viscosity  coefficient  of  a  lubricant  through  an  accurate 
film  thickness  formula  and  accurate  film  thickness 
measurements. Part 2. Proc. of the I. Mech. E, Part J: J. of 
Engineering Tribology. 2011, 225(6), 449-464. doi:10.1177/ 
1350650111398405   
[20]   Lotfizadeh  Dehkordi  B.;  Shiller,  P.  J.;  Doll,  G.  L. 
Pressure-  and  Temperature-Dependent  Viscosity 
Measurements  of  Lubricants  with  Polymeric  Viscosity 
Modifiers.  Front.  Mech.  Eng.  2019,  5,  18.  doi: 
10.3389/fmech.2019.00018. 
[21] Zhou,  Y.;  Li,  W.;  Stump,  B.  C.;  Connatser,  R.M.; 
Lazarevic,  S;  Qu,  J.  Impact  of  Fuel  Contents  on 
Tribological  Performance  of  PAO  Base  Oil  and  ZDDP. 
Lubricants.  2018,  6(3),  79. 
https://doi.org/10.3390/lubricants6030079. 
[22] Matsushita,  O.;  Tanaka,  M.;  Kobayashi,  M.;  Keogh,  P.; 
Kanki,  H.  Basics  of  Plain  Bearings.  In.  Vibrations  of 
Rotating Machinery. Mathematics for Industry. Springer, 
Tokyo. 2019. https://doi.org/10.1007/978-4-431-55453-0_2 
[23] Kryvyi,  O.  F.;  Miyusov,  M.  V.  Mathematical  model  of 
hydrodynamic characteristics on  the  ship’s  hull  for any 
drift angles. Advances in Marine Navigation and Safety 
of  Sea  Transportation.  CRC  Press,  2019.  111-117. 
https://doi.org/10.1201/9780429341939. 
[24] Kryvyi,  O.,  Miyusov,  M.  Construction  and  Analysis of 
Mathematical  Models  of  Hydrodynamic  Forces  and 
Moment  on  the  Ship's  Hull  Using  Multivariate 
Regression Analysis. Trans Nav, the International Journal 
on Marine Navigation and Safety of Sea Transportation. 
2021, 15(4), 853-864. doi:10.12716/1001.15.04.18.