873
based on reinforcement learning,” Ocean Eng., vol. 189,
e106299, Aug. 2019, doi: 10.1016/j.oceaneng.2019.106299.
[6] J. Chen, J. Liang, and Y. Tong, “Path planning of mobile
robot based on improved differential evolution
algorithm,” In Proceedings of the 16th International
Conference on Control, Automation, Robotics and Vision,
ICARCV, Dec. 13-15, 2020, pp. 811-816, doi:
10.1109/ICARCV50220.2020.9305415.
[7] E. W. Dijkstra, “A note on two problems in connexion
with graphs,” Numer. Math, vol. 1, pp. 269-271, 1959.
[8] H. Dong, Z. Ding, and S. Zhang, Eds. “Deep
Reinforcement Learning: Fundamentals, Research and
Applications,” Springer Nature Book, Jun. 2020,
https://deepreinforcementlearningbook.org.
[9] L. E. Dubins, “On curves of minimal length with a
constraint on average curvature, and with prescribed
initial and terminal positions and tangents.” Am. J. Math.,
vol. 79, pp. 497-516, 1957, doi: 10.2307/2372560.
[10] V. Francois-Lavet,P. Henderson, R. Islam, M. G.
Bellemare, and J. Pineau, “An Introduction to deep
reinforcement learning,” Found. Trends Mach. Learn.,
vol. 11, pp. 219-354, Nov. 2018, doi:
10.48550/arXiv.1811.12560.
[11] R. Jaramillo-Martínez, E. Chavero-Navarrete, and T.
Ibarra-Pérez, “Reinforcement-learning-based path
planning: A reward function strategy,” Applied Sci., vol.
14, e7654, Aug. 2024, doi: 10.3390/app14177654.
[12] D.P. Kingma, and J. L. Ba, “Adam: A method for
stochastic optimization,” Computing Research
Repository, Dec. 2014, https://arxiv.org/abs/1412.6980.
[13] S. M. LaValle, “Rapidly-exploring random trees: A new
tool for path planning,” Annu. Res. Rep., Computer
Science Department, Iowa State University. Ames, Iowa,
USA, 1998.
https://api.semanticscholar.org/CorpusID:14744621.
[14] A. Lazarowska, “Comparison of discrete artificial
potential field algorithm and wave-front algorithm for
autonomous ship trajectory planning,” IEEE Access, vol.
8, pp. 221013-22102, Dec. 2020, doi:
10.1109/ACCESS.2020.3043539.
[15] Y. Li, J. Zhao, Z. Chen, G. Xiong, and S. Liu, “A robot
path planning method based on improved genetic
algorithm and improved dynamic window approach,”
Sustainability, vol. 15, no. 5, e4656, Mar. 2023, doi:
10.3390/su15054656.
[16] M. Lin, K. Yuan, C. Shi, and Y. Wang, “Path planning of
mobile robot based on improved A* algorithm,” In
Proceedings of the 29th Chinese Control And Decision
Conference, CCDC, May 28-30, 2017, pp. 3570-3576, doi:
10.1109/CCDC.2017.7979125.
[17] L. Liu, J. Yao, D. He, J. Chen, J. Huang, H. Xu, B. Wang,
and J. Guo, “Global dynamic path planning fusion
algorithm combining jump-A* algorithm and dynamic
window approach,” IEEE Access, vol. 9, pp. 19632-19638,
Jan. 2021, doi: 10.1109/ACCESS.2021.3052865.
[18] L. Liu, L. Li, H Nian, Y. Lu, H. Zhao, and Y. Chen,
“Enhanced grey wolf optimization algorithm for mobile
robot path planning,” Electronics, vol. 12, no. 18. e4026,
Sep. 2023, doi: 10.3390/electronics12194026.
[19] J. Luo, Z. X. Wang, and K. L. Pan, “Reliable path
planning algorithm based on improved artificial potential
field method,” IEEE Access, vol. 10, p. 108276-108284,
Oct. 2022, doi: 10.1109/ACCESS.2022.3212741.
[20] W. Min, L. Mo, B. Yin, and S. Li,” An improved cuckoo
search algorithm and its application in robot path
planning,” Appl. Sci., vol. 14, no. 20, e9572, Oct. 2024, doi:
10.3390/app14209572.
[21] D. K. Muhsen, F. A. Raheem,and A. T. Sadiq, ”A
Systematic review of rapidly exploring random tree RRT
algorithm for single and multiple robots,” Cybern. Inf.
Technol., vol. 24, pp. 78-101, Sep. 2024, doi: 10.2478/cait-
2024-0026.
[22] G. Parlangeli, and G. Indiveri, “Dubins inspired 2D
smooth paths with bounded curvature and curvature
derivative,” IFAC Proceedings Volumes, vol. 43, no. 16,
pp. 252-257, 2010, doi: 10.3182/20100906-3-IT-2019.00045.
[23] G. A. Rummery, and M. Niranjan, “On-line Q-learning
using connecionist systems,” Technical Report,
Cambridge University Engineering Department.
Cambridge, England. 1994.
[24] D. Shan, S. Zhang, X. Wang, and P. Zhang, “Path-
planning strategy: adaptive ant colony optimization
combined with an enhanced dynamic window
approach,” Electronics, vol. 13, no. 5, e825, Feb. 2024, doi:
10.3390/electronics13050825.
[25] R. Singh, J. Ren, and X. Lin, “A review of deep
reinforcement learning algorithms for mobile robot path
planning,” Vehicles, vol. 5, no. 4, pp. 1423-1451, Oct. 2023,
doi: 10.3390/vehicles5040078.
[26] P. Sudhakara, and V. Ganapathy, “Trajectory planning
of a mobile robot using enhanced A-star algorithm,” J. Sci.
Technol., vol. 9, no. 41, pp. 1-10, 2016, doi:
10.17485/ijst/2016/v9i41/93816.
[27] R. S. Sutton, “Learning to predict by the methods of
temporal differences,” Mach. Learn., vol. 3, pp. 9-44, 1988,
https://10.1007/BF00115009.
[28] R. S. Sutton, and A. G. Barto, “Reinforcement Learning.
An Introduction,” 2d edition, MIT Press. Cambridge, MA,
USA, 2020.
[29] R. Tang, X. Tang, and H. Zhao, “Enhancing whale
optimization algorithm with differential evolution and
Lévy flight for robot path planning.” Int. J. Adv. Comput.,
Sci. Appl., vol. 15, no. 6, pp. 401-410, 2024, doi:
10.14569/IJACSA.2024.0150540.
[30] P. Vana, and J. Faigl, “Optimal solution of the
generalized Dubins interval problem: Finding the
shortest curvature-constrained path through a set of
regions,” Auton. Robots, vol. 44, pp. 1359-1376, Aug.
2020, doi: 10.1007/s10514-020-09932-x.
[31] S. X. Wang, “The improved Dijkstra's shortest path
algorithm and its application”. Procedia Eng., vol. 29, pp.
1186-1190, Feb. 2012, doi: 10.1016/j.proeng.2012.01.110.
[32] X. Wang, Z. Liu, and J. Liu, “Mobile robot path planning
based on an improved A-star algorithm,” In Proceedings
of the 2nd International Conference on Computer
Graphics, Artificial Intelligence, and Data Processing,
ICCAID, May 23, 2023, doi: 10.1117/12.2674526.
[33] Watkins, C. Learning from delayed rewards. Ph.D.
dissertation, Cambridge University, Cambridge, U.K.,
1989.
[34] Y. Xu, B. Sang, and Y. Zhang, “Application of improved
sparrow search algorithm to path planning of mobile
robots,” Biomimetics, vol. 9, no. 6, e351, Jun. 2024, doi:
10.3390/biomimetics9060351.
[35] G. Zhang, Y. Deng, W. Zhang, and C. Huang, “Novel
DVS guidance and path-following control for
underactuated ships in presence of multiple static and
moving obstacles”, Ocean Eng., vol. 170, pp. 100–110,
Dec. 2018, doi: 10.1016/j.oceaneng.2018.10.009.
[36] L. Zheng, W. Yu, G. Li, G. Qin, and Y. Luo, “Particle
swarm algorithm path-planning method for mobile
robots based on artificial potential fields,” Sensors, vol.
23, no. 13, e6082, Apr. 2023, doi: 10.3390/s23136082.