559
whereas the Intersleek 1001-coated hull retained a
6.35% increase in resistance.
Overall, the results highlight the potential of cobalt-
based ceramic coatings as a viable alternative to
conventional antifouling paints, offering both lower
initial roughness and enhanced self-cleaning
performance under operational conditions.
ACKNOWLEDGEMENTS
The authors acknowledge Vibrantz Technologies for their
invaluable collaboration in the manufacturing of the
experimental panels. Their support has been instrumental in
making this research possible.
FUNDING
This work was supported by the Government of Cantabria
and the European Union Next GenerationEU/PRTR [project
Environmentally friendly bioactive coatings for energy
improvement and emissions reduction in the fishing
shipbuilding industry - BIO-ENER.].
REFERENCES
[1] H. Lindstad, R.M. Bright, A.H. Strømman, Economic
savings linked to future Arctic shipping trade are at odds
with climate change mitigation, Transp Policy (Oxf) 45
(2016) 24–30.
https://doi.org/10.1016/j.tranpol.2015.09.002.
[2] S. García, A. Trueba, D. Boullosa-Falces, H. Islam, C.
Guedes Soares, Predicting ship frictional resistance due to
biofouling using Reynolds-averaged Navier-Stokes
simulations, Applied Ocean Research 101 (2020).
https://doi.org/10.1016/j.apor.2020.102203.
[3] L. Trueba-Castaneda, D.S. Sanz, S. Garcia, A. Trueba,
Analysis of biofouling economic impact on the Cantabria
fishing fleet, in: OCEANS 2021: San Diego – Porto, IEEE,
2021: pp. 1–6.
https://doi.org/10.23919/OCEANS44145.2021.9706079.
[4] N. Hadžić, I. Gatin, T. Uroić, V. Ložar, Biofouling dynamic
and its impact on ship powering and dry-docking, Ocean
Engineering 245 (2022) 110522.
https://doi.org/10.1016/j.oceaneng.2022.110522.
[5] D.S. Sanz, S. García, L. Trueba-Castañeda, D. Boullosa-
Falces, A. Trueba, Antifouling and Anticorrosive
Protection of Renewable Energy Marine Structures with
TiO2-Based Enamel, TransNav, the International Journal
on Marine Navigation and Safety of Sea Transportation
18 (2024) 419–424. https://doi.org/10.12716/1001.18.02.21.
[6] C.-C. Chang, M.-L. Huang, C.-H. Li, Analysis of emission
reduction strategies for the use of alternative fuels and
natural carbon sinks in international bulk shipping,
Energy Conversion and Management: X 24 (2024) 100702.
https://doi.org/10.1016/j.ecmx.2024.100702.
[7] M. Leer-Andersen, L. Larsson, An
experimental/numerical approach for evaluating skin
friction on full-scale ships with surface roughness, J Mar
Sci Technol 8 (2003) 26–36. https://doi.org/10.1007/s10773-
003-0150-y.
[8] D.S. Sanz, S. García, A. Trueba, L. Trueba-Castañeda, H.
Islam, C. Guedes Soares, D. Boullosa-Falces, Numeric
analysis of the biofouling impact on the ship resistance
with ceramic coating on the hull, in: Trends in Maritime
Technology and Engineering Volume 1, CRC Press,
London, 2022: pp. 443–449.
https://doi.org/10.1201/9781003320272-49.
[9] Y.K. Demirel, O. Turan, A. Incecik, Predicting the effect of
biofouling on ship resistance using CFD, Applied Ocean
Research 62 (2017) 100–118.
https://doi.org/10.1016/j.apor.2016.12.003.
[10] S. Song, Y.K. Demirel, M. Atlar, An investigation into the
effect of biofouling on the ship hydrodynamic
characteristics using CFD, Ocean Engineering 175 (2019)
122–137. https://doi.org/10.1016/j.oceaneng.2019.01.056.
[11] D. Owen, Y.K. Demirel, E. Oguz, T. Tezdogan, A. Incecik,
Investigating the effect of biofouling on propeller
characteristics using CFD, Ocean Engineering 159 (2018)
505–516. https://doi.org/10.1016/j.oceaneng.2018.01.087.
[12] N. Speranza, B. Kidd, M.P. Schultz, I.M. Viola, Modelling
of hull roughness, Ocean Engineering 174 (2019) 31–42.
https://doi.org/10.1016/j.oceaneng.2019.01.033.
[13] D.S. Sanz, S. García, L. Trueba, A. Trueba, Bioactive
Ceramic Coating Solution for Offshore Floating Wind
Farms, TransNav, the International Journal on Marine
Navigation and Safety of Sea Transportation 15 (2021).
https://doi.org/10.12716/1001.15.02.19.
[14] S. García, D. Boullosa-Falces, D.S. Sanz, A. Trueba, M.A.
Gomez-Solaetxe, Artificial-intelligence-model to
optimize biocide dosing in seawater-cooled industrial
process applications considering environmental,
technical, energetic, and economic aspects, Biofouling 40
(2024) 366–376.
https://doi.org/10.1080/08927014.2024.2363241.
[15] E. Robertson, V. Choudhury, S. Bhushan, D.K. Walters,
Validation of OpenFOAM numerical methods and
turbulence models for incompressible bluff body flows,
Comput Fluids 123 (2015) 122–145.
https://doi.org/10.1016/j.compfluid.2015.09.010.
[16] A. Trueba, L.M. Vega, S. García, F.M. Otero, E.
Madariaga, Mitigation of marine biofouling on tubes of
open rack vaporizers using electromagnetic fields, Water
Science and Technology 73 (2016) 1221–1229.
https://doi.org/10.2166/wst.2015.597.
[17] D. Boullosa-Falces, D.S. Sanz, S. Garcia, L. Trueba-
Castañeda, A. Trueba, Predicting tubular heat exchanger
efficiency reduction caused by marine biofilm adhesion
using CFD simulations, Biofouling (2022) 1–11.
https://doi.org/10.1080/08927014.2022.2110493.
[18] D.S. Sanz, S. García, A. Trueba, H. Islam, C.G. Soares,
Prediction of biological development effects on drag
forces of ceramic hull coating using Reynolds-averaged
Navier–Stokes-based solver, Biofouling (2023) 1–14.
https://doi.org/10.1080/08927014.2023.2209020.
[19] A. Trueba, S. García, F.M. Otero, L.M. Vega, E.
Madariaga, Influence of flow velocity on biofilm growth
in a tubular heat exchanger-condenser cooled by
seawater, Biofouling 31 (2015).
https://doi.org/10.1080/08927014.2015.1070404.
[20] D.S. Sanz, S. Garcia, A. Trueba, L.M. Vega, L. Trueba-
Castaneda, D. Boullosa-Falces, Application of ceramic
coatings to minimize the frictional drag penalty on ships,
in: OCEANS 2021: San Diego – Porto, IEEE, 2021: pp. 1–5.
https://doi.org/10.23919/OCEANS44145.2021.9706045.
[21] D. Boullosa-Falces, S. García, D. Sanz, A. Trueba, M.A.
Gomez-Solaetxe, CUSUM chart method for continuous
monitoring of antifouling treatment of tubular heat
exchangers in open-loop cooling seawater systems,
Biofouling 36 (2020) 73–85.
https://doi.org/10.1080/08927014.2020.1715954.
[22] D. Boullosa-Falces, M.A. Gomez-Solaetxe, Z. Sanchez
Varela, S. García, A. Trueba, D. Sanz, Study of the impact
of EMF on the reduction of biofouling in heat exchangers,
in: Trends in Maritime Technology and Engineering
Volume 1, CRC Press, London, 2022: pp. 511–515.
https://doi.org/10.1201/9781003320272-57.
[23] S. Garcia, A. Trueba, L. Vega, E. Madariaga,
Improvement of Electromagnetic Fields treatment for
biofouling growth control in tubular heat exchanger-
condenser cooled by seawater, in: OCEANS 2017 -
Aberdeen, IEEE, 2017: pp. 1–5.
https://doi.org/10.1109/OCEANSE.2017.8084576.