438
INFLUENCE OF TANK FILLING LEVEL ON LIQUID
SLOSHING EFFECTS ONBOARD SHIPS - STATIC AND
DYNAMIC APPROACH,” J. KONES. Powertrain
Transp., vol. 19, no. 3, pp. 239–248, Jan. 2015, doi:
10.5604/12314005.1138129.
[6] J. Olivella, “A rigorous practical method to compute the
effects of the free surface in the ship for fluid weights,”
Trans. Built Environ., vol. 11, 1995, [Online]. Available:
https://www.witpress.com/Secure/elibrary/papers/MT95
/MT95056FU.pdf.
[7] P. R. Couser, “On The Effect of Tank Free Surfaces On
Vessel Static Stability,” Int. J. Marit. Eng., vol. 146, no. a3,
p. 10, 2004, doi: 10.3940/rina.ijme.2004.a3.24041.
[8] W. Mironiuk, “Changing stability of the ship while
flooding compartments in the aspect of the maritime
transport safety,” WSEAS Trans. Fluid Mech., vol. 14, pp.
79–83, 2019.
[9] I. Dreiseitl, “About Geotechnical Properties of the Deep
Seabed Polymetallic Nodules,” in 18th International
Conference on Transport and Sedimentation of Solid
Particles, 2017, pp. 67–74.
[10] A. Kozlowska-Roman and S. Mikulski, “Chemical and
morphological characterization of polymetallic ( Mn-Fe )
nodules from the Clarion-Clipperton Zone in the Pacific
Ocean,” Geol. Quaterly, pp. 1–18, 2021, doi:
10.7306/gq.1626.
[11] K. Amudha, S. K. Bhattacharya, R. K. Annabattula, K. K.
Gopkumar, and G. A. Ramadass, “An Experimental
Investigation of the Behavior of Single-Particle Breakage
on Polymetallic Nodules,” Mar. Technol. Soc. J., vol. 55,
no. 6, pp. 93–107, Dec. 2021, doi: 10.4031/MTSJ.55.6.9.
[12] M. Viana, “About pycnometric density measurements,”
Talanta, vol. 57, no. 3, pp. 583–593, May 2002, doi:
10.1016/S0039-9140(02)00058-9.
[13] A. Vrij and S. Boel, “Blue Nodules Deliverable report
D4.5 Mining Platform,” 2020.
[14] “Initial Assessment of the NORI Property, Clarion-
Clipperton Zone,” Brisbane, 2021. [Online]. Available:
https://www.sec.gov/Archives/edgar/data/1798562/00012
1390021033645/fs42021a2ex96-1_sustainable.htm.
[15] L. Ju, J. Li, Q. Wang, Y. Li, D. Vassolos, and Z. Yang,
“Solid bulk cargo liquefaction: Stability of liquid
bridges,” Phys. Fluids, vol. 34, no. 8, Aug. 2022, doi:
10.1063/5.0098834.
[16] I. C. Tugsan and S. Tanzer, “Cargo liquefaction and
dangers to ships,” in TransNav, 2014.
[17] C. Li, T. Honeyands, D. O’Dea, and R. Moreno-Atanasio,
“The angle of repose and size segregation of iron ore
granules: DEM analysis and experimental investigation,”
Powder Technol., vol. 320, pp. 257–272, Oct. 2017, doi:
10.1016/j.powtec.2017.07.045.
[18] L. A. van Paassen, P. J. Vardon, A. Mulder, G. van de
Weg, and P. Jeffrey, “Investigating the Susceptibility of
Iron Ore to Liquefaction,” in Poromechanics V, Jun. 2013,
no. June, pp. 1478–1487, doi: 10.1061/9780784412992.176.
[19] J. Deng, X. Wang, H. Wang, H. Cao, and J. Xia,
“Quantitative Description of Size and Mass Distribution
of Polymetallic Nodules in Northwest Pacific Ocean
Basin,” Minerals, vol. 14, no. 12, 2024, doi:
10.3390/min14121230.
[20] L. M. Pump, “Degradation of Polymetallic Nodules in
Deep-Sea Multi-Stage Lifting Motor Pump,” pp. 1–18,
2021.
[21] P. Kacprzak, “Stability evaluation during loading
simulation of bulk carriers in the Clarion-Clipperton
Zone using a modified weather criterion,” Sci. Journals
Marit. Univ. Szczecin, vol. 80, no. 152, pp. 14–22, 2024,
doi: 10.17402/620.
[22] IMO, Adoption of the internationa code on intact
stability, 2008 (2008 IS CODE), vol. 267, no. December.
2008.
[23] S. Ferauge, W. Jacobs, and K. De Baere, “‘
LIQUEFACTION ’ AND ‘ DYNAMIC SEPARATION ’
DIFFERENT ASPECTS OF THE International maritime
Solid Bulk Code,” Trans RINA, Marit. Eng., vol. 161, pp.
419–425, 2019, doi: 0.3940/rina.ijme.2019.a4.551.
[24] I. . Clark, Stability, Trim and Strength for Merchant Ships
and Fishing Vessels, 2nd ed. London: The Nautical
Institute, 2008.
[25] P. Lindhout, J. Kingston-Howlett, F. T. Hansen, and G.
Reniers, “Reducing unknown risk: The safety engineers’
new horizon,” J. Loss Prev. Process Ind., vol. 68, no. July,
p. 104330, 2020, doi: 10.1016/j.jlp.2020.104330.
[26] M. Helsloot, W. Snip, and I. Helsloot, “Case study: The
downside of using a worst-case approach in occupational
safety policy as an interpretation of the precautionary
principle: Putting the uncertain UXO occupational safety
risk into probabilistic perspective,” Risk Anal., pp. 1–8,
2024, doi: 10.1111/risa.17653.
[27] J. Matusiak, “Dynamics of cargo shift onboard a ship in
irregular beam waves,” Int. Shipbuild. Prog., vol. 47, no.
449, pp. 77–93, 2000.
[28] Z. Szozda, “A Concept of Ship Stability Criteria Based on
Cargo Shift Caused by Rolling Due to Gust,” Zesz. Nauk.
Nr Akad. Morskiej W Szczecinie, vol. 74, no. 2, pp. 347–
358, 2004.
[29] A. Sriantini and A. D. D. Ebdasari, “Studi Kasus
Pengaruh Pergeseran Muatan Terhadap Stabilitas Kapal
di MV. Kutai Raya Dua,” J. Apl. Pelayaran Dan
Kepelabuhanan, vol. 14, no. 1, pp. 1–6, 2023, doi:
10.30649/japk.v14i1.97.
[30] Z. Szozda, Stateczność statku morskiego. Szczecin:
Akademia Morska w Szczecinie, 2006.
[31] J. Soliwoda, “Vessel stability safety during cargo
operations,” Sci. Journals Marit. Univ. Szczecin, vol. 13,
no. 85, pp. 79–85, 2008.
[32] Rawson, K. J. and E. C. Tupper, Basic Ship Theory Vol 1
- Hydrostatics and Strenght, vol. 1, no. 4. 2001.
[33] J. Dudziak, Teoria Okrętu, Wydanie II. Gdańsk: Fundacja
Promocji Przemysłu Okrętowego i Gospodarki Morskiej,
2008.
[34] C. . Barrass, Ship Design and Performance for Master
and Mates. Oxford: Elsevier Buytterworth-Heinemann,
2004.
[35] W. Więckiewicz, Podstawy Pływalności i Stateczności
statków Handlowych. 2006.
[36] J. HyuckChoi, J. J. Jensen, H. O. Kristensen, U. D.
Nielsen, and H. Erichsen, “Intact Stability Analysis of
Dead Ship Conditions using Form,” J. Sh. Res., vol. 61, no.
3, pp. 167–176, 2017, doi: 10.5957/JOSR.170005.
[37] K. Park, J. Ku, J. Lee, and N. Ku, “Real-time ship stability
evaluation program through deterministic method based
on second-generation intact stability,” Int. J. Nav. Archit.
Ocean Eng., vol. 15, p. 100526, 2023, doi:
10.1016/j.ijnaoe.2023.100526.
[38] N. Petacco, G. Petkovic, and P. Gualeni, “An insight on
the post-processing procedure of the Direct Stability
Assessment within SGISC,” Ocean Eng., vol. 305, p.
117982, Aug. 2024, doi: 10.1016/j.oceaneng.2024.117982.
[39] P. Ruponen, E. Altintas, J. Matusiak, and T. Mikkola, “A
practical approach for simplified operational guidance to
avoid parametric roll resonance,” Ocean Eng., vol. 330,
no. April, p. 121215, 2025, doi:
10.1016/j.oceaneng.2025.121215.
[40] H. Hashimoto and K. Furusho, “Influence of sea areas
and season in navigation on the ship vulnerability to the
parametric rolling failure mode,” Ocean Eng., vol. 266, p.
112714, Dec. 2022, doi: 10.1016/j.oceaneng.2022.112714.
[41] Shipyard Szczecin, B-517 Series - Loading Manual.
Szczecin, 1986.
[42] P. Kacprzak, “An analysis of shear forces , bending
moments and roll motion during a nodule loading
simulation for a ship at sea in the Clarion – Clipperton
Zone,” Sci. Journals Marit. Univ. Szczecin, vol. 65, no. 137,
pp. 9–20, 2021, doi: 10.17402/456.
[43] E. C. Tupper, Introduction to Naval Architecture, 5th ed.
Butterworth-Heinemann, 2013.