380
techniques in dynamic environment,” Measurement, vol.
163, p. 107995, 2020. doi:
10.1016/j.measurement.2020.107995.
[20] S. Erol, R. M. Alkan, ˙I. M. Ozulu, and V. ˙Ilc¸i,
”Performance analysis of real-time and post-mission
kinematic precise point positioning in marine
environments,” Geodesy and Geodynamics, vol. 11, no. 6,
pp. 401–410, 2020. doi: 10.1016/j.geog.2020.09.002.
[21] M. El-Diasty and M. Elsobeiey, ”Precise Point
Positioning Technique with IGS Real-Time Service (RTS)
for Maritime Applications,” Positioning, vol. 6, pp. 71–80,
2015. doi: 10.4236/pos.2015.64008.
[22] R. M. Alkan, M. H. Saka, ˙I. M. Ozulu, and V. ˙Ilc¸i,
”Kinematic precise point positioning using GPS and
GLONASS measurements in marine environments,”
Measurement, vol. 109, pp. 36–43, 2017. doi:
10.1016/j.measurement.2017.05.054.
[23] F. Yang, L. Li, L. Zhao, and C. Cheng, ”GPS/BDS Real-
Time Precise Point Positioning for Kinematic Maritime
Positioning,” in Proc. China Sat. Nav. Conf. (CSNC), vol.
III, pp. 295–307, Springer Singapore, 2017.
[24] Y. Yang, W. Gao, S. Guo, Y. Mao, and Y. Yang,
”Introduction to BeiDou-3 navigation satellite system,”
Navigation, vol. 66, no. 1, pp. 7–18, 2019. doi:
10.1002/navi.291.
[25] N. Tunalioglu, T. Ocalan, and A. H. Dogan, ”Precise
point positioning with GNSS raw measurements from an
android smartphone in marine environment
monitoring,” Marine Geodesy, vol. 45, no. 3, pp. 274–294,
2022. doi: 10.1080/01490419.2022.2027831.
[26] Dong, Y., Zhang, L., Wang, D., Li, Q., Wu, J., Wu, M.
(2020). Low-latency, high-rate, high-precision relative
positioning with moving base in real time. GPS Solut., 24,
1–13. doi: 10.1007/s10291-020-0969-1.
[27] Hou, X., Fang, K., Wang, Z., Li, Q., Fang, J. (2020,
January). Research on ambiguity solution integrity
monitoring for moving base RTK. In Proceedings of the
2020 International Technical Meeting of The Institute of
Navigation (pp. 468–486). doi: 10.33012/2020.17156.
[28] Wang, Z., Hou, X., Dan, Z., Fang, K. (2023). Adaptive
Kalman filter based on integer ambiguity validation in
moving base RTK. GPS Solut., 27(1), 34. doi:
10.1007/s10291-022-01367-4.
[29] Lygouras, E., Gasteratos, A. (2021). A novel moving-base
RTK-GPS-Based wearable apparatus for precise
localization of humans in peril. Microprocess. Microsyst.,
82, 103833. doi: 10.1016/j.micpro.2021.103833.
[30] Kim, B. G., Kim, D., Song, J., Kee, C. (2024). Expanding
Network RTK Coverage Using an Ionospheric-Free
Combination and Kriging for Tropospheric Delay.
NAVIGATION: J. Inst. Nav., 71(3). doi: 10.33012/navi.662.
[31] A. H. Dodson, W. Chen, N. T. Penna, and H. C. Baker,
”GPS estimation of atmospheric water vapour from a
moving platform,” J. Atmos. Solar-Terrestrial Phys., vol.
63, no. 12, pp. 1331–1341, 2001. doi: 10.1016/S1364-
6826(00)00251-0.
[32] T. Ford, M. Hardesty, and M. Bobye, ”Helicopter ship
board landing system,” in Proc. 18th Int. Tech. Meeting
Sat. Div. Inst. Navig. (ION GNSS 2005), Long Beach, CA,
USA, Sep. 2005, pp. 979–988.
[33] B. Li, Z. Zhang, N. Zang, and S. Wang, ”High-precision
GNSS ocean positioning with BeiDou short-message
communication,” J. Geod., vol. 93, pp. 125–139, 2019. doi:
10.1007/s00190-018-1145-z.
[34] J. Geng, F. N. Teferle, X. Meng, and A. H. Dodson,
”Kinematic precise point positioning at remote marine
platforms,” GPS Solut., vol. 14, pp. 343–350, 2010. doi:
10.1007/s10291-009-0157-9.
[35] K. He, D. Weng, S. Ji, Z. Wang, W. Chen, and Y. Lu,
”Ocean real-time precise point positioning with the
BeiDou short-message service,” Remote Sens., vol. 12, no.
24, p. 4167, 2020. doi: 10.3390/rs12244167.
[36] T. Trombetti et al., ”On the seafloor horizontal
displacement from GPS and compass data in the Campi
Flegrei caldera,” J. Geod., vol. 97, no. 6, p. 62, 2023. doi:
10.1007/s00190-023-01751-z.
[37] M. Sato et al., ”Improvement of GPS/acoustic seafloor
positioning precision through controlling the ship’s track
line,” J. Geod., vol. 87, no. 9, pp. 825–842, 2013. doi:
10.1007/s00190-013-0649-9.
[38] S. Xue, Y. Yang, and W. Yang, ”Single-differenced
models for GNSS-acoustic seafloor point positioning,” J.
Geod., vol. 96, no. 5, p. 38, 2022. doi: 10.1007/s00190-022-
01613-0.
[39] S. Ji et al., ”High-precision Ocean navigation with single
set of BeiDou short-message device,” J. Geod., vol. 93, pp.
1589–1602, 2019. doi: 10.1007/s00190-019-01273-7.
[40] L. C. Tsai et al., ”Coastal sea-surface wave measurements
using software-based GPS reflectometers in Lanyu,
Taiwan,” GPS Solut., vol. 25, no. 4, p. 133, 2021. doi:
10.1007/s10291-021-01167-2.
[41] Li, Z., Guo, F., Zhang, X., Guo, Y., Zhang, Z. (2024).
Analysis of factors influencing significant wave height
retrieval and performance improvement in spaceborne
GNSS-R. GPS Solut., 28(2), 64. doi: 10.1007/s10291-023-
01605-3.
[42] Li, Z., Guo, F., Zhang, X., Zhang, Z., Zhu, Y., Yang, W., ...
Yue, L. (2024). Integrating spaceborne GNSS-R and SMOS
for sea surface salinity retrieval using artificial neural
network. GPS Solut., 28(4), 1–12. doi: 10.1007/s10291-024-
01709-4.
[43] Vergados, P., Krishnamoorthy, S., Martire, L., Mrak, S.,
Komj´athy, A., Morton, Y. T. J., Vilibi´c, I. (2023).
Prospects for meteotsunami detection in earth’s
atmosphere using GNSS observations. GPS Solut., 27(4),
169. doi: 10.1007/s10291-023-01492-8.
[44] Sch¨one, T., Pandoe, W., Mudita, I., Roemer, S., Illigner,
J., Zech, C., Galas, R. (2011). GPS water level
measurements for Indonesia’s Tsunami Early Warning
System. Nat. Hazards Earth Syst. Sci., 11(3), 741–749. doi:
10.5194/nhess-11-741-2011.
[45] Kim, G., Park, W., Park, B. (2024, January). Moving
Baseline RTK-based Ground Vehicle-Drone Combination
System. In Proceedings of the 2024 International
Technical Meeting of The Institute of Navigation (pp.
630–636). doi: 10.33012/2024.19577.
[46] Li, B., Feng, Y., Shen, Y., Wang, C. (2010). Geometry-
specified troposphere decorrelation for sub centimeter
real-time kinematic solutions over long baselines. J.
Geophys. Res. Solid Earth, 115(B11). doi:
10.1029/2010JB007549.
[47] Morozov, V. A. (1984). Methods for solving incorrectly
posed problems. Springer Science Business Media. doi:
10.1112/blms/17.6.621.
[48] Golub, G. H., Heath, M., Wahba, G. (1979). Generalized
cross-validation as a method for choosing a good ridge
parameter. Technometrics, 21(2), 215–223.
[49] Hansen, P. C. (1992). Analysis of discrete ill-posed
problems by means of the L-curve. SIAM Rev., 34(4), 561–
580. doi: 10.1137/1034115.
[50] Hansen, P. C., O’Leary, D. P. (1993). The use of the L-
curve in the regularization of discrete ill-posed problems.
SIAM J. Sci. Comput., 14(6), 1487–1503. doi:
10.1137/0914086.
[51] Xu, P. (1998). Mixed Integer Geodetic Observation
Models and Integer Programming with Applications to
GPS Ambiguity Resolution. J. Geodetic Soc. Jpn., 44(3),
169–187. doi: 10.11366/sokuchi1954.44.169.
[52] Li, B. (2010). Theory and Method of Parameter
Estimation for Mixed integer GNSS Stochastic and
Function Models. Tongji University, PhD Thesis, pp. 57–
58.
[53] Shen, Y., Xu, H. (2002). Spectral decomposition formula
of regularization solution for ill-posed equation. J.
Geodesy Geodynamics, 22(3), 10–14. doi:
10.14075/j.jgg.2002.03.004.