233
parameter. The analysis shows that the value of δkom
depending on the compression process can take values
from 0.65 to 8.89.
Aiming to eliminate the compression energy
requirement, we proposed the concept of using the
phase transformation - of a solid or liquid into a gas, or
of a solid into a liquid - as an alternative energy source
for transporting material from the seabed (Figure 1).
This was the issue we tackled first which resulted in
articles [3-6,9-20] and patents [6,18].
Figure 4. Dependence of the possibility of energy recovery χE
[%] on the parameter , which is the ratio of the density of
the transported cargo
u to the density of sea water
p on the
surface [9,11].
The concept of using the phase transformation of a
solid or liquid into a gaseous state or a solid into a
liquid has one characteristic property that
distinguishes it from the systems currently in use. This
characteristic is the possibility of using (in the next
cycle) part of the energy (Figure 4) that has been
generated or is necessary to initiate the ascent of the
transport module. The method of transporting
excavated material from the seabed using rope or
hydraulic methods is associated with the property that
the total energy that we had to use to perform the
intended purpose is irretrievably lost [5].
Returning to the first case considered, in which the
determined energy requirement E3C of 47.06 kJ/kg is
less than the estimated potential energy Ep. was a
stimulus for thought. The problem of the erroneous
result, which earlier in this article we described as
caused by our overzealousness in the correctness of the
assumption of the endpoint, was actually the
inspiration for a new look at the problem under
consideration. This resulted in articles [5,15,17,19,20]
and patents [6,18] dealing precisely with the recovery,
storage and conversion of a portion of energy. The one
that is not used at a given position of the transport
module in the ascent and descent process in order to
use it when it is needed to continue the set process.
ACKNOWLEDGEMENT
The research was financed from subsidies for the
maintenance and development of the research potential
of the AGH University of Science and Technology in Kraków,
Poland.
REFERENCES
[1] Abramowski T, Kotliński R (2011) Współczesne
wyzwania eksploatacji oceanicznych kopalin
polimetalicznych. Górnictwo i geoinżynieria 35(5):41-61
[2] Atkins, P., de Paula, J. (2010). Physical Chemistry (9th ed.).
Oxford University Press.
[3] Broda K., Filipek W., (2018). Sposób transportu i
urządzenie transportujące ładunek w wodzie, zwłaszcza
z dużych głębokości — [Method of transportation and the
device transporting a load in water, preferably from large
depths] / Akademia Górniczo-Hutnicza im. Stanisława
Staszica w Krakowie; wynalazca: Krzysztof BRODA,
Wiktor FILIPEK. — Int.Cl.: E21C 50/00(2006.01). —
Polska. — Opis patentowy ; PL228529B1 ; Udziel. 2017-
11-24 ; Opubl. 2018-04-30. — Zgłosz. nr P.414387 z dn.
2015-10-16
[4] Broda K., Filipek W., (2018). Sposób transportu i
urządzenie transportujące ładunek w środowisku
płynnym, zwłaszcza z dużych głębokości — [Method of
transportation and the device transporting a load in fluid
environment, preferably from large depths] / Akademia
Górniczo-Hutnicza im. Stanisława Staszica w Krakowie ;
wynalazca: Krzysztof BRODA, Wiktor FILIPEK. —
Int.Cl.: E21C 50/00(2006.01). — Polska. — Opis patentowy
; PL228530B1 ; Udziel. 2017-11-24 ; Opubl. 2018-04-30. —
Zgłosz. nr P.414388 z dn. 2015-10-16
[5] Broda K., Filipek W., Tora B. (2023). Polish Experience in
Offshore Mining: The New Concept of Transport Deep-
Sea Concretions and Processing; 4GEO, Springer,
Springer Nature.
[6] Broda K., Filipek W., (2025). Sposób transportu i
autonomiczne urządzenie do transportu ładunku w
wodzie, zwłaszcza z dużych głębokości — [Method of
transportation and an autonomous device for
transportation of a load in water, preferably from large
depths] / Akademia Górniczo-Hutnicza im. Stanisława
Staszica w Krakowie ; wynalazca: Krzysztof BRODA,
Wiktor FILIPEK. — Int.Cl.: E21C 50/00(2006.01). —
Polska. — Opis patentowy ; PL246767B1 ; Udziel. 2024-
12-12 ; Opubl. 2025-03-03. — Zgłosz. nr P.425482 z dn.
2018-05-09
[7] Çengel, Y.A., Boles, M.A. (2014). Thermodynamics: An
Engineering Approach (8th ed.). McGraw-Hill Education.
[8] Depowski S, Kotliński R, Rühle E, Szamałek K (1998)
Surowce mineralne mórz i oceanów, Wydawnictwo
Naukowe Scholar, Warszawa
[9] Filipek W., Broda K., (2016). Theoretical foundation of the
implementation of controlled pyrotechnical reactions as
an energy source for transportation from the sea bed.
Scientific Journals of the Maritime University of Szczecin
48 (120) 2016, pg. 117-124
[10] Filipek W., Broda K., (2017). Experimental verification of
the concept of the use of controlled pyrotechnic reaction
as a source of energy as a part of the transport system
from the seabed, Scientific Journals of the Maritime
University of Szczecin, 49 (121) 2017, 77-83.
[11] Filipek W., Broda K. (2017),The Theoretical Basis of the
Concept of Using the Controlled Pyrotechnical Reaction
Method as an Energy Source in Transportation from the
Sea Bed, TransNav the International Journal on Marine
Navigation and Safety of Sea Transportation, Vol.11, No.
4, 653-659.
[12] Filipek W., Broda K. (2017),Research on the Application
of Controlled Pyrotechnic Reaction with the Use of
Ammonium Nitrate for Transport from Seabed,
TransNav the International Journal on Marine
Navigation and Safety of Sea Transportation, Vol.11, No.
4, 647-652.
[13] Filipek W., Broda K. (2018) Theoretical research on the
gas phase density change in processes occurring during
work of the transport module intended for transport from
the seabed / W: Proceedings of the international
conference on Human safety in work environment :
operating machinery and equipment : integrated