183
[11] D. Szpilko and J. Ejdys, “EUROPEAN GREEN DEAL —
RESEARCH DIRECTIONS. A SYSTEMATIC
LITERATURE REVIEW,” Ekonomia i Srodowisko, vol.
81, no. 2. 2022, doi: 10.34659/eis.2022.81.2.455.
[12] European Commission, The European Green Deal.
COM(2019) 640 final, Brussels, vol. 53, no. 9. 2019.
[13] S. Mohamed Ali and A. H. Nawawi, “The social impact
of urban waterfront landscapes: Malaysian perspectives,”
2009.
[14] G. Pultrone, “Trieste and its port as paradigm of a
renewed sea-oriented vision?,” TRIA-TERRITORIO
DELLA Ric. SU INSEDIAMENTI E Ambient., vol. 7, no.
1, 2014.
[15] J. Debrie and N. Raimbault, “The port-city relationships
in two European inland ports: A geographical
perspective on urban governance,” Cities, vol. 50, 2016,
doi: 10.1016/j.cities.2015.10.004.
[16] M. Tanko, H. Cheemarkurthy, S. Hall Kihl, and K.
Garme, “Water transit passenger perceptions and
planning factors: A Swedish perspective,” Travel Behav.
Soc., vol. 16, 2019, doi: 10.1016/j.tbs.2019.02.002.
[17] E. M. Kløvning, “A Study of Efficiency Regarding Port
Operations on a Passenger Ferry,” TransNav, vol. 18, no.
3, pp. 555–563, Sep. 2024, doi: 10.12716/1001.18.03.09.
[18] P. Gełesz, A. Karczewski, J. Kozak, W. Litwin, and Ł.
Piątek, “Design Methodology for Small Passenger Ships
on the Example of the Ferryboat Motława 2 Driven by
Hybrid Propulsion System,” Polish Marit. Res., vol. 24,
no. s1, 2017, doi: 10.1515/pomr-2017-0023.
[19] M. S. Tannum and J. H. Ulvensøen, “Urban mobility at
sea and on waterways in Norway,” in Journal of Physics:
Conference Series, 2019, vol. 1357, no. 1, doi:
10.1088/1742-6596/1357/1/012018.
[20] M. Tanko and M. I. Burke, “Transport innovations and
their effect on cities: The emergence of urban linear ferries
worldwide,” in Transportation Research Procedia, 2017,
vol. 25, doi: 10.1016/j.trpro.2017.05.483.
[21] M. Tanko, M. I. Burke, and H. Cheemakurthy, “Water
Transit and Ferry-Oriented Development in Sweden:
Comparisons with System Trends in Australia,” Transp.
Res. Rec., vol. 2672, no. 8, 2018, doi:
10.1177/0361198118782275.
[22] M. Tanko, M. I. Burke, and B. Yen, “Water transit and
excess travel: discrete choice modelling of bus and ferry
trips in Brisbane, Australia,” Transp. Plan. Technol., vol.
42, no. 3, 2019, doi: 10.1080/03081060.2019.1576382.
[23] M. Tarkowski and K. Puzdrakiewicz, “Connectivity
benefits of small zero-emission autonomous ferries in
urban mobility—case of the coastal city of gdańsk
(Poland),” Sustain., vol. 13, no. 23, 2021, doi:
10.3390/su132313183.
[24] E. Cabrera, R. Del Teso, E. Gómez, E. Cabrera, and E.
Estruch-Juan, “Deterministic model to estimate the
energy requirements of pressurized water transport
systems,” Water (Switzerland), vol. 13, no. 3, 2021, doi:
10.3390/w13030345.
[25] N. P. Reddy et al., “Zero-Emission Autonomous Ferries
for Urban Water Transport: Cheaper, Cleaner Alternative
to Bridges and Manned Vessels,” IEEE Electrif. Mag., vol.
7, no. 4, 2019, doi: 10.1109/MELE.2019.2943954.
[26] V. Budnyk and K. Lernichenko, “Urban passenger water
transport: Operating within public-private partnership
(international research and case study),” Econ. Ann., vol.
178, no. 7–8, 2019, doi: 10.21003/ea.V178-07.
[27] P. A. Jayasinghe, S. Derrible, and L. Kattan,
“Interdependencies between Urban Transport, Water,
and Solid Waste Infrastructure Systems,” Infrastructures,
vol. 8, no. 4. 2023, doi: 10.3390/infrastructures8040076.
[28] S. Chen et al., “Coupled simulation of urban water
networks and interconnected critical urban infrastructure
systems: A systematic review and multi-sector research
agenda,” Sustainable Cities and Society, vol. 104. 2024,
doi: 10.1016/j.scs.2024.105283.
[29] K. Suresh, C. Forgaci, and D. Stead, “Developing an
Integrated and Contextualized Planning and Design
Framework for Livable Patterns of Urbanization in
Chennai,” Sustain., vol. 14, no. 16, 2022, doi:
10.3390/su141610178.
[30] G. Fancello et al., “Micro urban spaces and mental well-
being: Measuring the exposure to urban landscapes along
daily mobility paths and their effects on momentary
depressive symptomatology among older population,”
Environ. Int., vol. 178, 2023, doi:
10.1016/j.envint.2023.108095.
[31] S. Tahmasseby, “The Implementation of Smart Mobility
for Smart Cities: A Case Study in Qatar,” Civ. Eng. J., vol.
8, no. 10, 2022, doi: 10.28991/CEJ-2022-08-10-09.
[32] H. A. Tran, T. A. Johansen, and R. R. Negenborn,
“Collision avoidance of autonomous ships in inland
waterways - A survey and open research problems,” in
Journal of Physics: Conference Series, 2023, vol. 2618, no.
1, doi: 10.1088/1742-6596/2618/1/012004.
[33] A. Abođi, T. Živojinović, S. Kaplanović, and V. Maraš,
“Overview and analysis of regulatory framework for the
application of autonomous vessels,” Tehnika, vol. 79, no.
1, 2024, doi: 10.5937/tehnika2401089a.
[34] Y. A. Ahmed, G. Theotokatos, I. Maslov, L. A. L.
Wennersberg, and D. A. Nesheim, “Towards
autonomous inland waterway vessels — a
comprehensive analysis of regulatory, liability and
insurance frameworks,” WMU J. Marit. Aff., vol. 23, no.
1, 2024, doi: 10.1007/s13437-023-00316-3.
[35] A. Łebkowski and W. Koznowski, “Modeling of an
Autonomous Electric Propulsion Barge for Future Inland
Waterway Transport,” Energies, vol. 16, no. 24, 2023, doi:
10.3390/en16248053.
[36] L. A. L. Wennersberg, H. Nordahl, Ø. J. Rødseth, V.
Bolbot, and G. Theotokatos, “Analysing supply chain
phases for design of effective autonomous ship
technology in new transport system solutions,” in
Proceedings of the International Conference on Offshore
Mechanics and Arctic Engineering - OMAE, 2020, vol. 6A-
2020, doi: 10.1115/OMAE2020-18715.
[37] K. Fjørtoft and E. Holte, “Implementing operational
envelopes for improved resilience of autonomous
maritime transport,” in Human Factors in
Transportation, 2022, vol. 60, doi: 10.54941/ahfe1002507.
[38] M. A. Kudrov, K. D. Bukharov, D. R. Makhotkin, and R.
S. Aivazov, “Statement of the Problem of Control of an
Autonomous Surface Vessel for Inland Waterways,”
World Transp. Transp., vol. 21, no. 3, 2023, doi:
10.30932/1992-3252-2023-21-3-2.
[39] M. M. Abaei, A. Bahootoroody, and E. Arzaghi,
“Predicting future of unattended machinery plants: A
step toward reliable autonomous shipping,” in
Proceedings of the International Ship Control Systems
Symposium, 2020, vol. 1, doi: 10.24868/issn.2631-
8741.2020.011.
[40] S. Krause et al., “Development of an advanced, efficient
and green intermodal system with autonomous inland
and short sea shipping - AEGIS,” in Journal of Physics:
Conference Series, 2022, vol. 2311, no. 1, doi:
10.1088/1742-6596/2311/1/012031.
[41] Y. Y. Zhang, J. Shuai, J. Billet, and P. Slaets, “Design and
Build of an Autonomous Catamaran Urban Cargo
Vessel,” in Journal of Physics: Conference Series, 2023,
vol. 2618, no. 1, doi: 10.1088/1742-6596/2618/1/012002.
[42] G. Peeters et al., “An inland shore control centre for
monitoring or controlling unmanned inland cargo
vessels,” J. Mar. Sci. Eng., vol. 8, no. 10, 2020, doi:
10.3390/jmse8100758.
[43] Y. Gu and S. W. Wallace, “Operational benefits of
autonomous vessels in logistics—A case of autonomous
water-taxis in Bergen,” Transp. Res. Part E Logist. Transp.
Rev., vol. 154, 2021, doi: 10.1016/j.tre.2021.102456.
[44] V. V. Karetnikov, S. F. Shakhnov, and E. L. Brodsky,
“Concept for Construction of Unmanned Ferry Lines on
Russia’s Inland Waterways,” in IOP Conference Series:
Earth and Environmental Science, 2022, vol. 988, no. 4,
doi: 10.1088/1755-1315/988/4/042057.