383
1 INTRODUCTION
European Union Commission transport statistics
show an increase in inland transport accidents
between2018and2022.[5].
Most incidents involving inland vessels occur in
restricted areas, particularly at the intersection of
inlandandmaritimewaterwaysinEUcountriessuch
as Poland, the Netherlands, Germany, France and
Croatia.[3].
The
journey of an inland waterway vessel from
Wrocław via Szczecin to Gdańsk takes place on an
inlandwaterwayandthenonthesea.Unfortunately,
despite the many technologies available, inland
vesselsarenotvisibleonthebridgeofaseavesseland
viceversa.[21].
Withoutintegrationofcommunicationdevices,
the
MMSI numbers of a seagoing vessel and the ATIS
numbers of an inland vessel are incompatible with
eachother.Alsowithoutintegration,themaritimeAIS
and inland INLANDAIS systems and the maritime
andinlandECDISchartsarenotcompatible.[20].
The integration of navigational and radio‐
communications equipment makes
it possible to
increasethesafetyofnavigationthroughtheeffective
transmission of information to SAR Rescue Centres
and the precise determinationofposition, e.g. when
searching for distress situations or underwater
hydrologicalwork.[10].
2 THEMODELOFRADIOCOMMUNICATIONS
PLATFORMSUPPORTINGINLAND
NAVIGATIONS
The integration of communication systems with
navigation systems makes it possible to create a
management module for data exchange betweenthe
mastersofinlandandmaritimevesselsaswellasRIS
andRCCCentres.
Model of Radio-Communications Platform Supporting
Inland Navigation
A.Lisaj
M
aritimeUniversityofSzczecin,Szczecin,Poland
ABSTRACT:ThearticlepresentsmodeloftheRadio
communicationsPlatformsupportingInlandNavigation.
The model of integrated satellite, analog and digital radio communications systems has been presented.
Individual blocks included in the module architecture has been developed. A communication model which
integratestheGalileosystemwithInlandAISforthepurposeofobtainingareliablepositioninlimited
waters
hasbeenpresented.ThefunctionalrequirementsoftheGalileoSatelliteSystemforintegrationwithInlandAIS
inrestrictedareaswascharacterized.Theintegrationofsatellitesystemswasanalysedinordertoimprovethe
compatibilityofCommunicationSystems.
http://www.transnav.eu
the International Journal
on Marine Navigation
and Safety of Sea Transportation
Volume 18
Number 2
June 2024
DOI:10.12716/1001.18.02.15
384
The advanced blocks of communication systems
arethethreemodules:Digitals,Radiotelephonesand
Satellite.
The Digitals are DSC VHF, DSC MF/HF,
RADIOTELEX,NAVTEX,EPIRBandSART.[1],[2].
The Radiotelephones are: VHF and MF
frequencies.
The Satellite are: GPS, INMARSAT, IRIDIUM,
GALILEO,THURAYA,GLOBALSTARandCOSPAS‐
SARSAT.
Figure2.The Radiocommunications Platform
architecture.[7],[8],[9],[13].[Ownwork].
The functional requirements of the Radio
communication Platform working for integrated
maritime and inland navigation bridges realizes the
followingfunctions:[4],[15],[19].
radionavigationandsatellitepositioning;
determination of the traffic characteristics of an
inlandwaterwayunit;
obtaininginformationontheownmotionvector;
imageofthenavigational
situationonthebasisof
theECDISandInlandECDIS.;
imageoftheanticollisionsituationonthebasisof
theAISandINLAND‐AIS.
Figure3. Satellite devices supporting Inland navigations.
THURAYAFDU‐XTandInmarsatInland‐ISATPHONE
[22],[23].
3 CONCEPTFORAPROTOTYPEMODULE
INTEGRATINGINLANDAISWITHTHE
GALILEOSATELLITESYSTEM.
The integration of maritime and inland
communication systems through access to modern
radioelectronictechnologywillallowustoobtainthe
most accurate positioning of a vessel, which is
essential during search and rescue operations, e.g.
man
overboard,aswellasduringunderwaterworkin
restricted areas and manoeuvres of maritime and
inlandvessels.[6],[9].
A concept for a prototype device integrating
INLAND AIS with the GALILEO Satellite System‐
Figure4‐waspresented
Figure4. A concept for a prototype device integrating
INLAND AIS with GALILEO Satellite System.[7],[own
work].
3.1 Themodeldesignedandpresentedincludesthe
followingsubsystems:
3.1.1 AntennareceivingGALILEOsignals.[3].
For the purposes of this module, the following
typescanbeused:
Magnetic mounted on a metal surface, some
models are additionally equipped with a self
adhesivesetthathelpsinfixingtoother
surfaces.
Body Mount mounted by screwing in the
mounting hole, or selfadhesive mounted on any
surface.
ModularEOMswithouthousing,forinstallation
inauserapplication.
3.1.2 Multistandardreceiverforpositioningsignals.
The above module provides high positioning
accuracyinpoorsatellitevisibility(e.g.
indenselyand
highly built‐up areas) and a short first position
measurementtime.[17],[18].
GNSS navigation systems to determine the
locationoftheobjectarebasedondataobtainedfrom
thenavigationmessage,transmittedbysatellitesand
information provided by wireless communications
systems, there for they are equipped with INS
modules
andothersensors.
3.1.3 Modulesallowingforcontrolofthedevice.[3],[12].
Controller
385
It is an element that processes and integrates all
the activities of individual ports entering the
device.Thesensorshavebeeninstalledwhichwill
be used by the individual navigation devices in
inlandnavigation.
Additonalsensors‐SEN1,SEN2,SEN3
They are designed for ports coming out of the
device.Thedeviceusingthesensoris aninternal
GALILEO receiver which is supposed to control
receivedsignalsandsentfromandtosatellites,so
astomaintainthegreatestpossibleaccuracywhen
collectinginformationbytheINLANDAISdevice.
Another devices a gyrocompass, which shows a
gyro compass course, which
allows to determine
the trajectory of the ships movement. The third
sensor will be used by the LOG to measure the
speed of the vessel, which is equipped with the
designer device. In the context of Inland
navigation, the synergy of these three sensors by
INLANDAISgives itinformation
intheplane of
speed,courseandpositionaccuracy.[4],[11],[17].
3.1.4 GALILEOaugmentation
It is a local system supporting a specific satellite
positioning.Itismountedtothecontrollerbymeans
ofanentryandexitport.TheEGNOSsystemissued
inEuropeanwaters.[12].
MainPort:
Mainportadapted
toworkwithINLANDECDIS
device. The devices will use twoway data
transmission. INLAND AIS will collect
information and send it to other receivers, while
INLAND ECDIS will be able to visualize all
received information from local stations in an
integratedbridge.[14],[15],[16].
TDMA (Time Division Multiple Access)
demodulators:
DemodulatorofTDMAtaskistodecodemessages
on normal frequencies. He is connected to the
receivers.
3.1.5 Descriptionofcodinganddecodingblocks.
DemodulatorDSC:[7].
Module decoding messages transmitted on
emergency frequencies. Connected directly to the
DSCreceiveronchannel70.
TDMAandDSCmodulators:
Devices that are
connected directly to the
transmitter.Theyaredesignedtoencodemessages
ontheappropriatefrequencies.
Receive/transfermodule.
It is a block in the presented project where the
maintaskistointegratedallreceivedinformation
bytheVHFantenna
Managementsystem:
The module which generated with designing the
algorithms all integrated navigation information
oncommoninterfaceanddisplay.
ControlPanel.
The display, which will be responsible for
displaying information about nearby objects and
units, will also enable the management of
informationsentbyourreceiverandothervessels
4 SUMMARY
The proposed concept of integrating terrestrial and
satellite
radio communication equipment with
navigation systems, including satellite navigation
systems,isanimportantdirectioninordertoincrease
thesafetyofnavigation.
Everything must be done, using the latest
electronicandcommunicationstechnology,toensure
thatinlandvesselscarrycargosafelyandthatpeople
donotdieonthem.[3].
Navigation
in inland waters and in restricted
areas, where the routes of seagoing vessels are
located,requiresparticularprecisionandattentionon
thepartofskippers.
The enormous amount of data received through
radionavigationdevicesrequiressolvingmanyissues
relatedtotheirmanagementandthedevelopmentofa
correctnavigationdecision.
International SAR services need to be able to
cooperate with all partners in Maritime and Inland
Rescue Operation, and an integrated Radio‐
communicationsPlatformcanprovidethis.
REFERENCES
[1]Czajkowski,J., Korcz,K.,“GMDSSdlałącznościbliskiego
zasięgu”Skryba,Gdańsk2006.
[2]Czajkowski, J.“Nowoczesne systemy GMDSS”, Gdańsk
2016.
[3]Directive 2005/44/EC of the European Parliament on
harmonised river information services (RIS) on inland
waterwaysintheCommunity(O.J.L255,30/09/2005).
[4]Januszewski, J., Wawruch, R., Weintrit,
A., Galor, W.,
”Zintegrowany Mostek Nawigacyjny jednostekżeglugi
morskorzecznej.” Zeszyty Naukowe Nr 63AM Gdynia
2009.
[5]Jerzyło P.,Wawrzyńska A., “Identyfikacja czynników
wpływającychnabezpieczeństwoeksploatacjistatkuna
śródlądowej drodze wodnej w delcie Wisły..” Prace
Naukowe Politechniki Warszawskiej Nr.121 Transport
2018.
[6]Korcz
K., “Strategia enawigacji wżegludze morskiej”,
PrzeglądTelekomunikacyjny,rocznikLXXXII,nr5/2009,
p.174.
[7]Koshevoy V.M., DSc, Shishkin A.V., The ECDIS
modernization for interaction with VHF radio
communicationsystem,TransNav:InternationalJournal
onMarineNavigationandSafetyofSeaTransportation,
Vol.9,No.3,pp.92100,
2015.
[8]Lisaj,A.,“Integrated Communications Platform for RIS
Centres Supporting Inland Navigation”‐12th
International Conference on Marine Navigation and
Safety of Sea Transportation TransNav 2017
Gdynia,Poland,2123June2017.
[9]Lisaj, A., Salmonowicz, W.,“Data transmission
technology in the maritime and inland harbours”.
EuropeanNavigationConference2427.04.2012,
Gdańsk.
[10]Neumann, T. Enhancing safety and reduction of
maritime travel time with invehicle telematics,
CommunicationsinComputerandInformationScience,
897,352365,2018
[11]Neumann,T.Automotiveandtelematicstransportation
systems, International Siberian Conference on Control
and Communications, SIBCON,
10.1109/SIBCON.2017.7998555,2017
386
[12]Neumann, T., Weintrit, A., “Information,
communication and environment” Marine Navigation
andSafetyofSeaTransportationCRSPress2015.
[13]Salmonowicz W. “Concept of Inland Shipping
Information System”. Polish Journal of Environmental
Studies Vol. 16, No 6B, pp. 127129. HARD Publishing
CompanyOlsztyn2007.
[14]Wawruch, R., “Uniwersalny statkowy system
automatycznejidentyfikacji.”,Gdynia2002.
[15]Wawruch, R., Stupak, T., Analiza zastosowań AIS do
unikania zderzeń, Prace Wydziału Nawigacyjnego
AkademiiMorskiejwGdyni,Vol.20pp.89‐100,2007
[16]Urbański, J., Weintrit, A., „Elektroniczna mapa
nawigacyjna dwadzieścia lat źniej. Przegląd
Hydrograficzny Nr 2. Biuro
Hydrografii Marynarki
Wojennej,Gdynia,2006.
[17]Urbański,J.,Weintrit, A., „Elektroniczna mapa
nawigacyjna dwadzieścia lat źniej. Przegląd
Hydrograficzny Nr 2. Biuro Hydrografii Marynarki
Wojennej,Gdynia,2006
[18]Uriasz, J., Lisaj,A., Smacki, A.,“The BICS advanced
method of the Electronic Ship Reporting for the RIS
Centre” 20th International Scientific and
Technical
Conference NavSub Polish Naval Academy
Gdynia,Poland,89November2016.
[19]Weintrit,A.,“Założenia projektowe zintegrowanego
mostka nawigacyjnego jednostek wżegludze morsko
rzecznej”.|Logistyka2010vol.4.
[20]Weintrit,A.,” Tworzenie bazy danych elektronicznych
map nawigacyjnych ENC dla potrzeb systemu ECDIS”
PrzeglądTelekomunikacyjnytomNo12,2007
[21]http://ris‐
odra.uzs.szczecin.pl
[22]http://www.inmarsat.com
[23]http://www.thuraya.com