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1 INTRODUCTION 

Lifeboat training is normally performed in controlled 
conditions to minimize the risk to trainees and 
equipment. Trainees are given limited or no 
opportunity to practice skills in operational scenarios 
that represent offshore emergencies. For this reason, 
human performance in emergencies is difficult to 
predict due to the limited data that is available. 
Forecasts of coxswains’ skill transfer to real-life 
operational scenarios have relied on experts’ opinion. 
Even so, there is limited information on how much 
skills learned in lifeboat training transfer to adverse 
weather conditions. The modelling of human 
performance in harsh environments has not been 
possible due to the scarcity of human performance 
data. 

With the advent of lifeboat simulator technology, it 
is now possible for trainees to practice in weather 
conditions typical of their location of operation and to 
apply their skills in realistic emergency scenarios. 
Simulation provides the possibility to apply 
knowledge in applications in highly contextualized 
environments that are representative of plausible 
emergencies. Research has shown that practice in 
realistic scenarios helps development of mental 
models to improve performance (Klein, 2008). The 
study of human performance using simulation is 
evident in other operations including flight 
(McClernon et al. 2011), medical (Stefandis et al. 2007) 
and marine (Sellberg, 2017) training. Lifeboat training 
data can now be collected to assess the amount of 
practice needed to acquire skills and to evaluate how 
skills learned in practice transfer to new scenarios 
(Billard, 2019).  

Using Bayesian Networks to Model Competence of 
Lifeboat Coxswains 

R. Billard 
Virtual Marine, St. John’s, Newfoundland, Canada 

J. Smith, M. Masharraf & B. Veitch 
Memorial University of Newfoundland, St. John’s, Newfoundland, Canada 

ABSTRACT: The assessment of lifeboat coxswain performance in operational scenarios representing offshore 
emergencies has been prohibitive due to risk. For this reason, human performance in plausible emergencies is 
difficult to predict due to the limited data that is available. The advent of lifeboat simulation provides a means 
to practice in weather conditions representative of an offshore emergency. In this paper, we present a 
methodology to create probabilistic models to study this new problem space using Bayesian Networks (BNs) to 
formulate a model of competence. We combine expert input and simulator data to create a BN model of the 
competence of slow-speed maneuvering (SSM). We demonstrate how the model is improved using data 
collected in an experiment designed to measure performance of coxswains in an emergency scenario. We 
illustrate how this model can be used to predict performance and diagnose background information about the 
student. The methodology demonstrates the use of simulation and probabilistic methods to increase domain 
awareness where limited data is available. We discuss how the methodology can be applied to improve 
predictions and adapt training using machine learning. 

 
http://www.transnav.eu 

the International Journal  
on Marine Navigation  
and Safety of Sea Transportation 

Volume 14 
Number 3 

September 2020 

DOI: 10.12716/1001.14.03.09 



586 

Data collected from a lifeboat simulator allow us to 
assess performance on tasks that were prohibitive to 
do, even in calm water training. This new data can be 
used to model learning and skill acquisition using 
probabilistic methods. We can study the interaction 
between tasks using Bayesian Networks (BN) to 
derive models of student competence (Millán and 
Pérez De-la-Cruz, 2002). These models can be used to 
study the relationship between training factors and to 
examine how practice on related tasks impacts 
performance. Due to scarcity of human performance 
data, initial models of competence can be formed with 
expert input (Groth et al., 2014). Performance data 
collected from simulator studies can provide evidence 
to inform models of trainee competence and validate 
their predictive accuracy. Bayesian methods have 
been used to model performance on lifeboat launch 
and manoeuvring tasks in initial training in calm 
weather conditions (Billard et al., 2020). Similar 
approaches can be applied to model performance in 
more adverse weather conditions.  

In this paper, we present a methodology to form 
probabilistic models of human performance that can 
be used to study this new problem space. We use a 
BN to define a model of the competence of slow-
speed maneuvering (SSM) based on tasks performed 
in adverse weather conditions during an offshore 
emergency. The model is derived from a combination 
of expert prediction and data collected from an 
experimental study.  

The methodology is used to investigate the 
following research goals: 
− how to formulate a BN model of competency using 

knowledge of task type and available performance 
measures; and, 

− how to combine expert knowledge and data 
collected from simulator exercises to improve the 
model’s predictive accuracy.  

We evaluate the model using available data sets 
from a simulator study on lifeboat coxswain 
performance. We demonstrate how this model can be 
used to 1) predict performance as trainees practice 
skills in simulator scenarios, and 2) diagnose 
background information about the student.  

The paper presents an approach that is relevant to 
training providers and researchers. We discuss how 
to apply the methodology and resultant models to 
study performance, improve expert assumptions, and 
extend to training applications where new data sets 
are being created. The models can be used to improve 
training programs, adapt training exercises to 
individual needs, and investigate human performance 
in new scenarios.  

2 BACKGROUND 

2.1 Competence – Slow Speed Maneuvering  

We demonstrate the methodology of creating a BN 
model of competence using evidence captured in an 
experiment designed to study lifeboat training.  

We must first frame our definition of competence 
considering our research goals and the objective 

measures that can be made. The concept of 
competence is a diverse topic that has diverse 
definitions. For our purposes, we consider how 
competence is normally measured in marine training 
through completion of demonstrable tasks specific to 
learning objectives (IMO 2014, STCW 2010). We 
consider competence the “existence of learnable 
cognitive abilities and skills which are needed for 
problem solving” as identified in research on skill 
acquisition (Weinert, 2001). We assume that 
completing tasks of a similar cognitive or physical 
skill form demonstrates competence.  

We construct a model of competence for the skill 
of Slow Speed Maneuvering (SSM), as demonstrated 
by the ability to complete tasks related to stopping a 
lifeboat next to an object in the water. It is expected 
that trained lifeboat operators have this required 
competence to perform in an emergency. The 
completion of tasks in an emergency scenario can 
include stopping next to a number of objects 
including a life raft, a person in the water (PIW), a 
small vessel for transfer of personnel, or a large vessel 
for securing the lifeboat for recovery. All tasks 
considered under the competence of SSM require a 
similar application of skills and similar performance 
measures.  

We assume there is a relationship between the 
SSM tasks based on the type of skill needed to 
perform the task. The maneuvering and stopping of a 
lifeboat is primarily a physical task and requires 
application of psychomotor skills to control the 
lifeboat, including manipulation of lifeboat throttle, 
steering, and making visual observations. There are 
also cognitive skills, including deciding angles of 
approach and judging distance from a target object. 
Practice on SSM tasks within a practice scenario is 
expected to improve performance on related SSM 
tasks based on the similarity of the tasks and type of 
skill that is applied. 

2.2 Simulator exercise and experiment  

We use data collected from a simulator scenario to 
formulate our model and provide evidence that can 
be used to inform and evaluate our methodology.  

Data was taken from an experiment that used a 
lifeboat simulator to study skill acquisition and 
transfer in lifeboat coxswains. The experiment was 
designed to evaluate how skills acquired in different 
training programs transferred to a plausible 
emergency event that required the launch and 
maneuvering of a lifeboat in weather conditions 
typical of offshore operations. Participants completed 
training using different approaches over a year long 
period and then participated in a new simulator 
exercise for assessment purposes. The assessment 
scenario included a combination of launch tasks and 
on-water tasks. Details of the scenario are provided in 
Figure 1. Additional details on the experimental test 
plan and simulator used in the study can be found in 
Billard et al. (2019).  

In real scenarios or in simulator exercises, SSM 
tasks form a part of the whole training exercise. Other 
tasks may need to be completed, including inspecting 
the lifeboat, launching the lifeboat, and navigating the 
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lifeboat. These tasks require application of different 
skills and have different measures, as described in 
previous research (Billard et al. 2018, Billard et al. 
2020). As such, these tasks are not related to 
competence of SSM and are excluded from the BN 
model creation as practice on these tasks is predicted 
to not affect SSM competence. 

 
Figure 1. Simulator assessment scenario with SSM tasks  

The data collected from the assessment scenario 
provided evidence to evaluate SSM competence 
modelled in a BN. The scenario contained 4 slow 
speed maneuvering tasks including, in order, 
stopping next to a Life Raft for inspection (LR), 
picking up two persons in the water (PIW1, PIW2), 
and stopping next to a Fast Rescue Craft (FRC) for 
transfer of personnel. These tasks provide evidence 
for the assessment of the SSM competence.  

All participants completed the scenario at least 
two times and data was collected for the maneuvering 
tasks for each attempt. Tasks were completed in the 
same order with each attempt. A total of 39 
participants completed the study.  

2.2.1 Measuring Performance  

The rubric used to define completion of the SSM 
task was derived from recognized training standards 

and is based on expected performance identified by 
Subject Matter Experts (SMEs). Each task requires 
approaching an object from a preferred direction, 
stopping close to the target, and maintaining a 
stopping speed. The specific parameters used to 
measure success differed slightly for each task (i.e. 
light contact with a vessel is acceptable for coming 
alongside a vessel, but not allowed for a PIW). Table 1 
provides an outline of task objectives and the 
corresponding measures used in the simulator 
exercise. Completion of tasks was based on several 
simultaneous measures captured by the simulator, 
each of which had to be performed correctly to be 
considered a successful completion. Additional 
details on the scoring measures and rubric has been 
presented previously (Billard et al. 2018). 

2.2.2 Bayesian Network Modelling 

Bayesian Networks (BN) use a graphical structure 
to represent the relationship between several random 
variables as represented in a directed acyclic graph 
(DAG). A sample BN DAG is provided in Figure 1. 
Nodes (a,b,c,d,e) represent the variables and arcs 
(arrows) represent the probabilistic relationship 
between the variables. Bayesian inference algorithms 
create a relationship between latent variables, which 
are inferred, based on the state of observed variables.  

 
Figure 2. Sample Bayesian network DAG 

 

 

Table 1. Slow speed manueuvering competence tasks __________________________________________________________________________________________________ 
Task   Task      Task Objective                    Measures 
Identifier Description __________________________________________________________________________________________________ 
LR   Stop at     Approach a static object accounting for wind and wave direction.   direction of approach 
    a Life Raft    Use a speed to allow stopping. Stop close to Life Raft (2-3 boat    speed at stop 
           lengths) and maintain position               time stopped  
PIW    Recover a Person Approach a drifting PIW accounting for wind and waves to     contact speed 
    in the Water (PIW) minimize chance of contact. Use a speed to allow stopping.     heading at stop 
           Stop close enough to PIW to allow pickup and maintain position   number of attempts 
           in waves 
FRC   Come Alongside  Approach a FRC accounting for wind and wave direction. Use  
    a Fast Response   a speed to allow stopping. Stop close to vessel (less than 0.5 meters)  
    Craft (FRC)   and at an angle to allow personnel transfer and maintain position. __________________________________________________________________________________________________ 

 

  



588 

Building a BN includes the following steps: 
1 Defining the variables that are being studied, both 

latent and observable, creating the nodes of the 
BN.  

2 Defining the relationships between variables using 
arcs. The arcs represent a causal influence between 
the variables. Variables in the network that are not 
graphically connected are conditionally 
independent of each other (i.e. a and b are 
conditionally independent).  

3 For each of the variables, defining the probability 
conditions with parent variables through 
Conditional Probability Tables (CPTs). The 
probabilities can be learned from real data or 
defined by experts.  

Detailed description of BNs and how they are 
created is provided in other literature (de Clerk et al., 
2013, Millán et al., 2010). 

Creating a BN to use observable evidence to study 
an inherent competence has applications in training 
frameworks including Intelligent Tutoring Systems 
(ITS) (Millán and Perez-De-La-Cruz., 2002, Käser et al. 
2017) and Evidence Centered Design (ECD) (Mislevy 
et al., 2004). In these frameworks, the BN forms a 
model of the competency that is being investigated 
(the student model) and identifies the relationships to 
the performance measures (the evidence) in the 
practice scenario (the activity). The relationships form 
a construct of competence, a latent variable, that can 
be measured through the collection of performance 
data, an observable variable.  

In our case, we use the observable completion of 
SSM tasks to quantify the latent variable of SSM 
competence using evidence collected through a 
simulation study.  

3 METHODOLOGY  

We use a BN methodology to model competence and 
predict the performance of lifeboat operators as they 
apply skills learned in training to a new scenario. We 
create a BN model using observable measures from a 
simulation scenario designed to evaluate coxswain 
performance in a plausible emergency. We use a 
combination of expert prediction and simulator data 
to create and revise our model. The methodology 
creates a student model of SSM competence that can 
be used for the prediction of performance on tasks 
and the diagnostic study of causal relationships 
between model variables. 

The steps in the methodology include the 
following, as outlined in figure 3: 
1 Defining a generic BN student model of 

competence - based on completion of tasks that are 
considered similar in the type of skill applied  

2 Characterizing the BN model as a SSM competence 
student model - based on the evidence gathered in 
a simulator practice exercise 

3 Creating the initial CPTs of the model nodes based 
on expert estimates  

4 Refining the CPTs based on experimental data - 
using the simulator experimental data to tune the 
model parameters 

5 Validating the model accuracy for predictive and 
diagnostic use cases using simulator data  

 
Figure 3. Methodology of creating and validating a SMM 
competence Bayesian network 

We perform two validation cases to show how the 
BN model can be applied and how the model changes 
with new data or variables. We first demonstrate how 
the predictive accuracy of the model changes as the 
methodology is applied. We evaluate the predictive 
accuracy of the model first formed with expert 
estimates and then re-evaluate the predictive accuracy 
after data have been used to refine the CPTs. We then 
present an example of how new variables can be 
added to the model and show how the model can be 
applied to diagnose the relationship between the new 
variable and observable evidence. The validation of 
models is discussed in Section 4.  

3.1 Step 1 - Defining a generic BN student model of 
competence 

We first describe the types of variables and 
relationship assumptions for the BN student model.  

We assume a latent variable of competence (C) and 
relate to task evidence nodes (Ei), which can be 
measured or observed in a scenario. The tasks are 
related by the type of skills needed to complete the 
tasks successfully.  

To create the DAG, we assume a structure where 
observable evidence of completing tasks changes the 
probability of the competence, as described in 
previous research (Millán and Pérez De-la-Cruz, 
2002). The generic model is presented in Figure 4. In 
the model structure, we assume a causal relationship 
where the latent variable (C) causes the evidence E1, 
E2, E3, … Ei. In this relationship, evidence about 
mastering a task changes the probability of the latent 
parent. Consequently, evidence about mastering C 
changes the probability of its children (Ei) and 
evidence about mastering a task affects the 
probability of mastering the rest of the tasks on the 
same level. This models assumes conditional 
independence of the Ei given C (for each i = 1,…n). In 
this DAG, the CPT parameters that need to be 
identified are the prior probability of the competence, 
P(C), and the conditional probabilities of the evidence 
nodes ( ){ }| , 1 , ...iP E C i n=  
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Figure 4. Competence model BN DAG 

3.2 Step 2 – Characterizing the BN Competence Model as 
a SSM competence student model 

We design the BN model to match the activity, in this 
case the slow speed maneuvering exercises performed 
in the simulator study. 

Figure 5 shows the DAG for the experimental 
study consisting of two scenarios, each having 4 
evidence nodes. In the simulator study, the trainee 
practiced the same scenario twice, creating two sets of 
evidential nodes, as the trainee completed the same 
tasks with each attempt. As an input of evidence in 
the BN, the task was either considered to be 
completed (Yes) or not completed (No) based on the 
performance requirements set by SMEs to measure 
successful completion of task.  

 
Figure 5. Bayesian network DAG – Simulator assessment 
scenario 

The structure of the model assumes a learning 
effect with tasks practiced in a training session 
consisting of multiple simulation exercises. We use a 
dynamic model indicating the trainee’s competence 
can be measured with each simulator exercise 
attempt. We define a relationship between the 
measure of competence in the first attempt (SSM1) 
and the measure of competence on the second attempt 
(SSM2). The relationship assumes the measure of 
competence in the first attempt impacts the 
probability of the second attempt through a defined 
CPT ( ){ }2 1|P SSM SSM . Based on the similarity of the 
task types it is expected that practice on any of the 
task types can improve the performance on other 
tasks, including future attempts at the same task 
using the same scenario.  

3.3 Step 3 – Creating initial CPTs based on expert 
estimates  

The structure of the BN requires the definition of 
CPTs including the prior probabilities of the SSM 
competence and the conditional probability of 
completing the evidence nodes (tasks) given the 
competence. 

For each of the tasks, we make predictions on the 
relationship between having the SSM competence and 
the ability to complete tasks. As defined in modelling 
of human performance (Millán et al, 2002), we use 
estimates of slip and guess to define the conditional 
probabilities. In our context, a slip is the probability of 
not being able to complete the task successfully 
despite having the competence. The probability of 
completing the task successfully when having the 
competence ( ){ }|i iP Task SSM  is therefore 1 – s, where s 
is the slip factor. A guess (g) is the probability of 
completing the tasks successfully without having the 
competence. The CPTs require definition of the 
probability of completing the task whilst having the 
competence (1 - s) and the probability of completing 
the task while not having the competence (g).  

We estimate the CPT parameters for each of the 
evidence nodes and the conditional probabilities for 
each of the competence variables. The probabilities of 
slip and guess were estimated by SMEs and took into 
the account the following: 

1 The participants in the study had received initial 
training and refreshed skills over a one-year 
period. It was expected that some participants had 
acquired enough skill to achieve competence.  

2 The simulator scenario in the study had not been 
practiced before and had challenging weather 
conditions (moderate sea states). These factors 
impact the probability of completing tasks that had 
been practiced in previous training events in less 
adverse weather.  

3 The task of stopping next to a PIW is more difficult 
to complete than stopping next to a life raft or 
stopping next to an FRC (Billard et al. 2020). We 
assume the probability of a slip is higher and the 
probability of a guess is lower for the PIW task.  

4 The performance of tasks in the simulator, either 
successfully or unsuccessfully, is considered 
practice. Competence is expected to increase as the 
scenario is repeated. The probability of slip on 
tasks is expected to reduce and the probability of a 
guess is expected to increase.  

In considering the type of task and the 
environmental conditions, SMEs estimated that there 
is a reasonable chance of slip given the difficulty of 
the task and the expectation that people could make 
errors despite having the competence. The 
irregularity of wind, wave, and propulsion forces 
create some variability in performance. 
Environmental forces could have a sudden negative 
impact (i.e. causing the vessel to overshoot position) 
resulting in slip. The environmental forces can also 
increase the chance of success of an inexperienced 
driver (e.g. helping slow and stop a vessel that is 
approaching too fast) creating a successful guess.  

Table 2 provides a breakdown of the probabilities 
used in the BN. These are considered an initial 
estimate of the probabilities based on an expert 
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prediction. The assumed initial probability of having 
the competence of SSM is estimated to be 60%, and 
increases in probability in the second scenario. For the 
evidence nodes, the probability of a successful 
completion of task is assumed to be lower for tasks 
that are more difficult. The assumed probability of 
completing LR and FRC tasks was assumed to be 
70%. The probability of completing the PIW task was 
estimated as 60% due to the increase in slip factor as 
the task is more challenging. Similarly, the assumed 
probability of a guess for the tasks of LR and FRC was 
assumed to be 30% and the estimated probability of a 
guess for the PIW task was estimated as 20%. To 
account for the effect of practice, the SSM competence 
is expected to increase for the second scenario. The 
assumed probability of a successful completion for 
each task was increased by an increment of 10% and 
the guess rate for each task was also assumed to 
increase by an increment of 10%.  

These estimates are an initial guess of expected 
outcomes provided by subject matter experts. The 
estimates are based on expert prediction as they could 
not be derived from data. The next step in the 
methodology uses experimental data to refine the 
CPTs used in the BN. 

3.4 Step 4 – Refine CPTs based on experimental data 

The BN model was created in modelling software, 
GeNIe, developed by Decision Systems Laboratory of 
the University of Pittsburgh. The DAG was based on 
the relationship diagram provided in Section 3.2, and 
the probabilities outlined in Section 3.3 were used to 
create the CPTs for each of the nodes.  

Data were collected in a simulator exercise, with 
evidence collected for each of the 39 participants who 
completed the two scenarios. The data set was split 
randomly into two groups: a learning data set and a 
validation data set. One set of the data (19 records) 
was used to adjust the parameters of the BN (the 
learning data) model and the second data set (20 
records) was used to predict the accuracy of the 
model (the validation data).  

Conducting parameter learning in the Bayesian 
Network is often termed training the BN. In this 
exercise, the parameters of the BN CPTs are adjusted 
in an effort to match the BN model predictions to the 
outcomes of the learning data set. This exercise is 

performed in the GeNIe modelling software, which 
uses an EM algorithm to learn parameters from data 
(Dempster, 1977). In our use case, we start training 
the BN with the probabilities set by the experts. As we 
have a small data set, we assume a low level of 
confidence in the parameters (20%) to allow the 
parameters to be flexible to change.  

We are now able to make comparisons between 
the original BN model, based on expert predictions, 
and the updated model, trained with experimental 
data.  

4 VALIDATION CASES 

4.1 Validation Case 1 - Evaluating model predictive 
capability using task evidence  

The validation data set is used measure the predictive 
accuracy of the BNs. The initial models developed by 
expert prediction and the trained models are applied 
to a new data set (the validation data) to compare 
each model’s predicted outcomes with evidence 
provided in the data set.  

Two validation steps are performed to show how 
the methodology resulted in an improved BN model: 

1 Testing the predictive accuracy of the BN with 
initial expert predictions of CPT – this step 
evaluates the suitability of the probabilities 
estimated by the SMEs.  

2 Testing the predictive accuracy of the BN after 
using the simulation data – this validation shows 
the impact of using additional simulator data to 
revise the model parameters.  

The validation demonstrates the use of BN for 
prediction, as the model attempts to identify the most 
likely occurrence of the evidence nodes. For each of 
the validation exercises we consider the model’s 
ability to predict the outcome of the final two tasks in 
the simulation exercise (PIW22 and FRC22). These 
two evidence nodes are selected as they are the last 
two tasks performed in the simulator exercise. 
Performance on these tasks is expected to be more 
likely a result of competence gained through practice 
than due to a random slip or guess. We compare the 
predicted outcome of the evidence nodes from the BN 
model to the actual outcome from the data set. 

 

Table 2. Inputs to BN - Expert estimates __________________________________________________________________________________________________ 
Scenario Attempt 1 __________________________________________________________________________________________________ 
( )1P SSM  60.0%   

1SSM   ( )1 1|P LR SSM   ( )1 11 |P PIW SSM    ( )1 12 |P PIW SSM    ( )1 1|P FRC SSM  
Y (1 - s)    70.0%     60.0%       60.0%       70.0% 
N (g)     30.0%     20.0%       20.0%       30.0% __________________________________________________________________________________________________ 
Scenario Attempt 2 __________________________________________________________________________________________________ 

1SSM   ( )2 1|P SMM SSM   
Y (1 - s)    70.0%  
N (g)     30.0%  

2SSM   ( )2 2|P LR SSM   ( )2 21 |P PIW SSM    ( )2 12 |P PIW SSM    ( )2 2|P FRC SSM  
Y (1 - s)    80.0%     70.0%       70.0%       80.0% 
N (g)     40.0%     30.0%       30.0%       40.0% __________________________________________________________________________________________________ 
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A benchmark comparison is made with a BN that 
uses a uniform distribution for initial CPT parameters 
for all latent and observable nodes. We use this BN to 
make a comparison with a model that is formed with 
no expert input and driven only by available data. 
This approach disregards the expert predictions and 
assumes an equal probability (50%) for completing or 
not completing tasks, and related slip and guess 
probabilities. The parameters are adjusted using the 
same learning data and using the same learning 
algorithm as in the expert prediction.  

Table 3 shows the differences in prediction 
accuracy of the BN models that were investigated. 
The Table indicates the number of times the model 
and validation set had a common outcome on 
successful completion of task (Yes) or when tasks 
were not successfully completed (No) for the 20 
records in the set. The predictive accuracy of the BN 
based on expert guesses was 75%, indicating the 
expert informed probabilities were reasonable. The 
predictive accuracy of the model increased slightly to 
78% when trained with experimental data. The 
approach of using expert input showed a much 
higher predictive accuracy than a model trained from 
uniform parameters. This outcome suggests that the 
expert guess was needed to generate a suitable model 
given the amount of available data.  

Table 3. BN model predictions and comparisons _______________________________________________ 
    Initial Expert  Expert Estimate Uniform 
    Estimate   Trained    Trained _______________________________________________ 
Overall  75% (30/40)  78% (31/40)  48% (19/40)  
PIW22 
Combined 80% (16/20)  80% (16/20)  50% (10/20) 
Yes   80% (8/10)   80% (8/10)   0% (0/10) 
No   80% (8/10)   80% (8/10)   100% (10/9)  
FRC2 
Combined 70% (14/20)  75% (15/20)  45% (9/20) 
Yes   100% (11/11)  73% (8/11)   0% (0/11) 
No   33% (3/9)   78% (7/9)   100% (9/9) _______________________________________________ 

 
The method also allows us to investigate how the 

data set changed the BN CPTs from the initial expert 
estimates. These changes provide insights on the 
predicted competence and task difficulty, as a 
refinement to the estimates initially made by the 
SMEs. Table 4 presents the change in CPT from the 
initial estimates provided in Table 2. The outcomes 
show the initial probability of SSM competence 
(SSM1) was lowered by 13%, indicating the initial 
estimate of competence was too high. The outcomes 
also show that most of the probability parameters for 

successful PIW pickup for each attempt had to be 
lowered, suggesting this task was more difficult than 
predicted. The probabilities for stopping at a life raft 
were increased for each attempt. 

Given the limited amount of data that is available, 
it is difficult to make conclusive remarks about the 
final probabilities of the BN model. Additional data 
are expected to further change the CPTs and increase 
the predictive accuracy of the BNs. 

4.2 Validation Case 2 – Investigate diagnostic causal 
relationship of background training 

In this section we discuss how the BN can be used as 
a diagnostic tool and identify causes given a set of 
observations. We incorporate additional information 
about the test participants and show how the model 
can be used to associate performance to the new 
information. We introduce a new evidence node, 
Background Training (BT), to indicate whether the 
participants received hands-on training during their 
regular practice prior to performing the simulator 
exercise. Participants who received hands-on training 
in regular practice sessions were more likely to be 
able to complete on-water tasks compared to those 
who did not (Billard et al. 2019). This information is 
known for all participants who completed the 
simulator scenario and the related validation data 
sets. 26 of 39 participants received hands-on training; 
13 did not.  

The updated BN for this model is provided in 
Figure 6. The BT node is introduced and forms a 
causal relationship having an influence on the starting 
competence of the trainee (SSM1). 

We again define the conditional probabilities for 
the influence of training on competence using an 
expert estimate as there were no existing data 
available. It is assumed that those who received 
hands-on training had a higher probability of having 
the competence, but not greater than 60% as training 
had not been received in the weather conditions used 
in the assessment scenario. It was assumed the 
participants who had not received hands-on training 
had a lower probability of having the competence, 
having not received any scenario-based practice. The 
probability of having received initial training was set 
to 50%, making the initial probability random. This 
allows the model to predict the causal affect based on 
the evidence nodes from the simulator experiments 
and inherent relationships. Table 5 shows the new 
CPT values defined in the BN.  

Table 4. Change in BN probabilities – trained model __________________________________________________________________________________________________ 
Scenario Attempt 1 __________________________________________________________________________________________________ 
( )1P SSM  47% (-13%)  

1SSM   ( )1 1|P LR SSM   ( )1 11 |P PIW SSM    ( )1 12 |P PIW SSM    ( )1 1|P FRC SSM  
Y (s)   76.1% (+ 6.1%)  57.4% (- 2.6%)     50.1% (-9.9%)     63.7% (- 6.3%) 
N (g)   41.5% (+11.5%)  16.6% (- 3.4%)     13.4% (- 6.6%)     23.8% (- 6.2%) __________________________________________________________________________________________________ 
Scenario Attempt 2 __________________________________________________________________________________________________ 

1SSM   ( )2 1|P SMM SSM   
Y (1 - s)  67.7% (- 2.3%) 
N (g)   25.6% (- 4.4%) 

2SSM   ( )2 2|P LR SSM   ( )2 21 |P PIW SSM    ( )2 12 |P PIW SSM    ( )2 2|P FRC SSM  
Y (1 - s)  83.8% (+ 3.8%)  69.3% (- 0.7%)     70.4% (+ 0.4%)    81.2% (+ 1.2%) 
N (g)   48.4% (+ 8.4%)  26.4% (- 3.6%)     28.6% (- 1.4%)     32.1% (+ 2.1%) __________________________________________________________________________________________________ 
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Figure 6. BN with training evidence introduced 

Table 5. Background training (BT) conditional probabilities _______________________________________________ 
P(BT)  50%  
BT   ( )1|P SSM Training  
Y (1-s)   60% 
N (g)    40% _______________________________________________ 

 

We perform a similar validation procedure 
outlined in section 4.1. We compare the BN model 
prediction of BT to the evidence from the validation 
data set. The evidence in this case is knowledge of the 
trainee’s background in terms of having received 
hands-on training (Yes) or not (No).  

Table 6 indicates the model correctly guessed if 
background training had been received for 65% of the 
records in the data set. This outcome suggests that 
additional data or a revised estimate is needed to 
refine the model and increase the predictive accuracy 
for this evidence node. As highlighted in Table 7, the 
conditional probabilities of having the SSM1 
competence decreased for both cases (with or without 
having received background training) when data 
were used to train the model. These changes in 
probability can be used to refine the expert estimate 
or initial CPT for new data sets.  

Table 6. Diagnostic accuracy – background training _______________________________________________ 
       Expert Estimate Trained _______________________________________________ 
BT  
 Overall     65% (13/20) 
 Yes       54% (7/13) 
 No       86% (6/7) _______________________________________________ 
 

Table 7. Change in SSM1 CPTs _______________________________________________ 
BT    ( )1|P SSM Training  _______________________________________________ 
Y (1-s)    55.4% (-4.6%) 
N (g)      35.3% (-4.7%) _______________________________________________ 

5 DISCUSSION 

The methodology in this paper presents an approach 
to use available information and background expert 
experience to create probabilistic models of human 
performance in scenarios for which there is limited 
available data. This approach can be applied to 
training applications where the desire is to investigate 
how observable measures of performance impact 
skills acquisition and competence. We chose lifeboat 
coxswain training as the use of simulation has 
extended training capabilities, and data from new 
scenarios are available to study this problem area.  

We presented a method to develop a student 
model of lifeboat competence that integrates expert 
prediction and evidence from a simulator experiment. 
We derived the BN model for SSM competence using 
a framework that has been applied in ITS and ECD to 
use observable evidence from a simulation 
assessment to design the model. We demonstrated 
how the BN model can be used to predict 
performance and diagnose causal relationships, 
illustrating how the model can be applied to 
investigate relationships between latent and 
observable variables.  

The validation examples indicate that embedding 
expertise in the model can result in a high initial 
predictive accuracy, despite using a small data set. 
The model’s predictive accuracy was further 
increased as simulator data were used to inform the 
BN probabilities. This outcome indicates that domain 
knowledge is valuable in initializing probabilistic 
models in cases where there is limited data. It is 
expected that the model’s predictive accuracy would 
improve further if the CPTs are trained with a large 
data set derived from user performance data.  

The scalability of the BN model is a strength that 
can be further explored. We presented a model of 
lifeboat coxswain competence that is very narrow (a 
single competence) and derived from a scenario with 
fixed weather and tasks. For this study, the modelling 
of competency is specific to the environmental 
conditions used in the scenario. In a training program 
involving multiple practice exercises, the number and 
order of task types can be varied, and the level of 
difficulty can change with environmental conditions 
(i.e. increase in wave height or wind, day or night). 
The probabilities are expected to be different in 
scenarios that are easier or more difficult. Additional 
background information can also be considered, 
including time between training events and student 
training experience. The relationship between other 
competencies can also be established (e.g. practice in 
maintaining heading seakeeping exercises may 
improve control of the vessel in SSM).  

Figure 7 shows an example of how the BN could 
be expanded to explore causal relationships between 
variables as more information on the student is 
known and as evidence is gathered through a training 
program. These BNs can become complex as they 
form a detailed model of student competence. These 
models can be used to investigate factors that affect 
performance while gaining insights on human 
performance limitations.  



593 

 
Figure 7. Sample BN with expanded relationships 
representing a lifeboat training program 

The formation of a student model using BNs offers 
additional means to apply probabilistic models to 
improve training. We have presented a model to 
study performance based solely on assessment of task 
performance (i.e. was the task completed successfully 
or not). The model can be expanded to investigate the 
specific behaviours performed by the participant in 
completing the task to study which actions result in 
the highest probability of success. This type of model 
tracing is possible given the measures identified in the 
rubric. The outcomes can be used to model novice 
and expert performance as inputs to ITS (Millán et al, 
2011). The probabilistic modelling of the BN can be 
integrated with machine learning algorithms to build 
adaptive training applications to customize training 
material to an individual’s strengths and weaknesses 
based on evidence gathered in training.  

To conclude the discussion, we make four 
recommendations to researchers who wish to use the 
methodology to study human performance and 
training for situations that have limited data. First, we 
advise the student model to be built as early as 
practicable to allow for the student BN to be informed 
with evidence that will be collected. This approach 
will allow for alignment between the student model 
with research objectives, and scenarios can be 
designed to study relationships of interest. Second, 
we recommend a balance of expert and data-driven 
input in the probabilistic models. As demonstrated, 
the modelling of CPTs using expert input can provide 
a model with suitable predictive accuracy. In cases 
where data are being collected for scenarios with 
limited initial data, the expert prediction is a guess. 
Probabilistic models derived from large data sets are 
expected to have a higher predictive accuracy. We 
also suggest that users consider the extended uses of 
relationship modelling of the BN approach. The BN 
models can be restructured, and new variables added 
(latent or observable) to investigate causal 
relationships and influence of new information. 
Finally, we suggest the use of simulation to perform 
assessments and collect data for situations that are 
normally prohibitive due to risk. Simulation scenarios 
extend studies to new operating conditions and 
provide a consistent measure of performance. Digital 
measures from a simulator exercise can input directly 
into probabilistic models such as BNs to apply 
machine learning and adapt training in real time.  
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