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ABSTRACT: The problem of vessel collisions or near-collision situations on sea, often caused by human error
due to incomplete or overwhelming information, is becoming more and more important with rising maritime
traffic. Approaches to supply navigators and Vessel Traffic Services with expert knowledge and suggest
trajectories for all vessels to avoid collisions, are often aimed at situations where a single planner guides all
vessels with perfect information. In contrast, we suggest a two-part procedure which plans trajectories using a
specialised A* and negotiates trajectories until a solution is found, which is acceptable for all vessels. The
solution obeys collision avoidance rules, includes a dynamic model of all vessels and negotiates trajectories to
optimise globally without a global planner and extensive information disclosure. The procedure combines all
components necessary to solve a multi-vessel encounter and is tested currently in simulation and on several test
beds. The first results show a fast converging optimisation process which after a few negotiation rounds
already produce feasible, collision free trajectories.

1 INTRODUCTION optimised but also coordinated between vessels to
provide guidance in critical traffic situations.
Trajectory planning methods are used already to plan
manoeuvres or guide single vessels in two-vessel
encounters. An overview of the most important
approaches is given by Statheros et al. (2007) and
Tam et al. (2009). Some  collision  avoidance
approaches are limited to two-vessel encounters or

estimate evasive manoeuvers for the own vessel only.

In the last decades marine traffic increased
significantly and consequently did the collision risk
for vessels. A lot of assistance systems like GPS,
ARPA, AIS or ECDIS were introduced to prevent
ship accidents, however, their number is still on a
constant, high level. Only groundings have
decreased slightly. About half of the accidents are

caused by human factors and take place in congested
areas, during port approach or in harbours, as stated
by reports of the Baltic Marine Environment
Protection Commission - Helsinki Commission
(HELCOM).

On-board and onshore assistance systems, as well
as future collision avoidance systems, can benefit
from knowledge about suggested trajectories for all
vessels in an encounter, which are not only locally

For this work the focus is on approaches for n-vessel
scenarios optimising all the trajectories of the
involved vessels. Heuristic optimization algorithms
are mainly used to solve this problem. One of the
first and most promising approaches using an
evolutionary  algorithm is  presented by
Smierzchalski (1999). Many other approaches use
heuristic methods like fuzzy-logic, neural networks
or ant algorithms. However, the most sophisticated
approach is presented by Szlapczynski (2011) and

335



Szlapczynski, R. & Szlapczynska]. (2012a, b). They
use an evolutionary algorithm with specialised
operators to shape the convergence of the
optimisation. In  Szlapczynski (2012, 2013)  this
approach is extended to the use within traffic
separation schemes (TSS). In order to limit the variety
of individuals of a population during evolutionary
optimisation Szlapczynskis approach generates
tracks, already partially valid within a TSS after
which a number of defined violation are penalised
using a specialised fitness function. A further
improvement of this algorithm is made for tracks in
restricted visibility according to the rule 19 of the
Collision Avoidance Regulations (COLREGs) and is
presented in Szlapczynski (2015).

All these approaches are more suitable for
onshore applications like Vessel Traffic Services
(VTS) because the information about the current
traffic situation has to be complete. However, for an
on-board usage the limited common situation
awareness limits global planning approaches with n-
vessels. Suggested trajectories for several vessels
must not only take information into account, which
are often hard or impossible to acquire for a single,
planning observer, but also satisfy a number of
constraints imposed by COLREGs and the vessel's
dynamic model.

1.1 Methodology

This paper proposes a staged procedure to find and
distribute and near optimal set of trajectories for a
number of vessels. During the procedure,
independent components for motion prediction,
trajectory generation and trajectory negotiation are
used to optimise all trajectories according to a global
performance measure (safety / efficiency). First, the
motion prediction estimates the future motion of the
other vessels based on their trajectories or on motion
models if a trajectory is unavailable after which the
trajectory generation algorithm plans a new
avoidance trajectory in a local area, given the locally
available information which will increase during the
negotiation. Finally the trajectory negotiation
component is used to find a global optimal solution
as fast as possible while the amount of data that
needs to be transferred is kept as little as possible. A
beneficial side effect is that the intentions of all
vessels in a critical situation are known early in the
process.

Even though new communication infrastructures
are being developed, which will provide advanced
communication architectures in the future, ie. by
Mu et al. (2011), the bandwidth is still considered as
limited in the near future. Therefore, the explicit
communication of all missing information is
regarded too costly on sea leading to our approach of
exchanging trajectories only. These trajectories
contain implicit information about preferences, ship’s
capabilities, parts of the ship’s value function and the
environment without needing to explicitly disclose
all those information. Furthermore, decentralised
algorithms are considered as computationally
favourable and can find Pareto-Optimal solutions
without needing to know the value function of
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trajectories for other negotiators, as shown by
Heiskanen (1999).

The described procedure is modelled and tested
in a simulation to compare a number of different
trajectory generation and negotiation approaches and
afterwards evaluated in different scenarios using
simulation and in several maritime test-beds at Lake
Constance and the German Bight.

2 TRAJECTORY DEFINITION

A trajectory is the exact path of the vessel over
ground; similar to tracks for vojage planning but
including exact turns. Therefore a Trajectory is
defined by j waypoints wo..wj1 and a speed v to
travel alonge the trajectory. To achive continuous
turning rates the segments between the waypoints
can be interpolated using fifth order Bézier curves.
Thus, the trajctory consist of j-1 Bézier curves.
Figure 1 shows an example of a trajectory defined by
four waypoints wo.. ws.
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Figure 1. A vessel trajectory defined by four waypoints.
The first waypoint is the current vessel position. The
segments between the waypoints are interpolated by three
Bézier curves.

The Bézier curves used for the interpolation are
parametric curves Bik(c). A Bézier curve of order n
used for the k-th path segement is defined by n +1
control points Po .. P» and a Bernstein polynomial:

B, (c)=3b,(c)P,. ce[0l], 0<k<j (O

with bin the i-th Bernstein polynomial of order n. The
interpolation is applied between the waypoints w1
and wr. The length of the curve for the k-th segment
is calculated by:

L (c)= _[Jx'(c)2 +y'(c)’de @)

To calculate the position of the vessel alonge the
trajectory at any time the parameter c is defined as a
function of the normalised time

o(t) =" ®)

with Tk the time when waypoint wk is reached and
At = Tk — Tx1 the time required to pass the segment,



which is calculated appling the track speed v to the
length of the curve L«(c). Using equation 1 and 3 the
position of the vessel on the trajectroy at any time
p(f) can be calculated by:

p(t)=ibiﬂn(c(t))e,j, 0<k<j (4)

This interpolation method allows the definition of
a complete vessel trajectoy R(W,V) using a set of
waypoints W = {wo .. wj1} and the track speed v.

3 MOTION PREDICTION

To identify possible collisions and for the avoidance
algorithms, knowledge about future motions of the
own and other vessels is necessary. Possible
information about the vessel’s current state can be
received e.g. by an AIS/ARPA system. For motion
prediction, necessary information are position, speed,
direction of motion and the length of the vessel.
Further optional information like the rate of turn or a
route plan consisting of waypoints can be used to
improve the performance of the prediction. Thus, an
approach considering all available information is
proposed in this work. If waypoints and a track
speed are available, this information is used to
generate a trajectory, and the trajectory following (TF)
method described in section 3.3 is used to estimate
the vessel’s position, traveling along this trajectory. If
waypoints for a vessel are unavailable, the future
motion of the vessel is predicted using two simple
motion models. One model is used for straight line
motion and another model is used for circular
motion. Due to the imprecise estimation of vessels
acceleration and the unknown desired speed during
an acceleration or deceleration manoeuvre the
assumption of a constant velocity is used for both
models.

For straight line motion the constant velocity (CV)
model is used. This non-holonomic model allows
movements with very low velocity uncertainties. This
leads to a good state estimation for straight line
motion but for manoeuvring motions the state
estimation impairs. The model for a circular motion
uses an approximately constant turn rate to define
the orientation change of a vessel and is called
constant turn rate and velocity (CTRV) model. The
velocity uncertainties in this model are larger than
for the constant velocity model. This improves the
state estimation for manoeuvring motions but
impairs the accuracy of a straight line motion
estimation. The models are based on experience from
the target tracking community and explained in
detail by Li & Jilkov (2003). For two-vessel encounter
scenarios,  Schuster et al. (2014)  presented an
approach to generate an evasive trajectory for the
own vessel, using those two models for the motion
prediction of the other vessel.

3.1 Constant Velocity Model (CV)

For the constant velocity model the longitudinal and
lateral position p = (x,y)T and velocities v = (¥,y)T can

be used. The direction of motion is used as
orientation of the vessel 0. This orientation can be
different to the true heading. However, for this work
the assumption is that the heading corresponds with
the direction of motion. Based on a starting state so
the position of a vessel can be calculated at any time ¢
with the system equation. Using the time different At
relating to the starting time At=t-to the system
equation for the constant velocity model is given by:

Xy + X+ At
XO) 1y yeat
y(t) . )
S, (t)=[6(t) |= arctan[&}
OIN I
qv Yo

3.2 Constant Turn Rate and Velocity (CTRV)

The circular motion model is defied by a non zero
turning rate @ =6 and the constant track speed v.
If turning rate is zero the CV model is used. The
tangent velocity vector v = (vx,vy)" is defined by:

(t) = vx(t) _ V-cos(ﬁ(t))] ©)
© ( ] {V-Sin(ﬁ(t))

The radius vector r(tf) pointing from a vessel
position p(t) to the centre of the circle is calculated
using this vector v(¢) and the turning rate:

r(t):%, ®w#0 )

The position of the vessel p(t) on the circular path
is calculated using the radius difference vector
Ar =r1(t) — ro. This radius difference vector Ar points
from the starting position to the current position:

p(t)=p, +Ar ®)
Applying equation 7 to equation 8 leads to:

p(t)=p0+v(t)—_vo, w#0 9)

Using equation 9 for the vessel postion leads to
the system equation for the CTRV model:
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X(t)
y(®)
Screy () =1 O(D)
v(t)

w(t)
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0

w
yo + v-(sin(8(t))—sin(6,))

0

(10)

©
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v

@

3.3 Trajectory Following

To estimate the position of a vessel traveling along a
trajectory the trajecotry definition from equation 4 is
used. The orientation of the vessel at any time O(t)
can by calculated using the time derivatives at
position p(t):

e(t)::arcan[%%%%%] a1

The curvature x(t) of the curve can be calculated
using the first and second time derivative at p(¢#):

()= XY= Yg(t) (1)
(x(t) +y () )
For this motion model the turning rate w(f)

changes over time and is calculated with the product
of the track speed v and the curvature «(¢):

o(t)=x(t)-v (12)

Using equation (5), (11) and (13) leads to the
system equation for a vessel moving along a
trajectory defined as a sequence of Bézier curves:

3, CO)P,
X(t) i;O
t ;(t) iZ.;bi,n(c(t))Piy,j e[l ,T,]
e vg)) arctan(x):/g;j ,0<j<k (13)
o(t) v
x(t)-v

3.4 Obstacle Handling with Safety Distance

The information about the future motion, estimated
either by CV model, CTRV model or the trajectory
following method, is stored in a three dimensional
grid with x,y and time. This grid is further called
obstacle grid. All grid cells within a safety distance to
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the trajectories are marked as occupied and
consequently prohibited for the own vessel. For the
safety distance a Davis domain (Davis et al. 1982)
scaled by the ship length is used to obtain a nautical
behaviour taking into account the COLREGs.

4 TRAJECTORY GENERATION

For trajectory generation we use a discrete space as
introduced above. Therefore, the own trajectory is
mapped to the grid and compared with the obstacle
grid. If a cell of the own path is marked as occupied
by another vessel in the obstacle grid a potential
collision is detected and an adopted A* algorithm is
triggered to find a new set of waypoints for an
avoidance trajectory. To guarantee the feasibility of
moving along this waypoints an approach taking into
account the kinematic constraints of a vessel as
presented by Blaichetal. (2012a) is used. This
approach only uses cells, reachable by the own vessel
considering the heading in the current cell and the
turning circle of the vessel. This constraint cell-
neighbourhood is named as T-Neighbourhood because
the reachable cells can be modelled as a T-shaped
geometry. Because planning takes place only in a
local area the waypoints of the avoidance trajectory
are a subset of a larger global trajectory. A tangential
connection between the avoidance trajectory and the
global trajectory is used to reach a smooth transition.
As presented by Blaich etal. (2012a) two virtual
obstacles, representing the turning circle of the
vessel, are used as so called connection-funnel. As
search algorithm an A* algorithm using the
T-Neighbourhood as presented by
Blaich et al. (2012b) is applied and modified for the
n-vessel scenarios with trajectory negotiation.

4.1 Specialised A* for negotiated trajectories

The A* search is applied to a grid. Each cell ¢ of this
grid represents the position of a vessel reaching this
cell within a minimum of time. Additionally the
orientation of the vessel, reaching this cell, is stored.
Thus, the grid is 2.5D with ¢ = (x,y,0)T storing to each
position one orientation. Suppose that the vessel
moves on the grid it takes discrete steps k from cell c
to cell cx+1. This motion is defined by an action u. The
set of possible actions applicable from cell ¢ is called
action space U(cx). The T-Neighbourhood limits
action space to a straight-line motion, a left and a
right turn. The goal of the search algorithm is to find
a sequence of reachable and collision free cells from a
start cell co corresponding to position po to a goal cell
¢ with minimum costs. As cost function the
A*-algorithm combines a cost-to-come function
g(cr,u) with a heuristic cost-to-go function h(cr) to
estimate the total cost f(cku) to reach a grid cell
applying action u:

f(c.)=9(c.u)+h(c,) (14)

For the cost-to-come function g(cku), a simplified
version without turn penalties but considering the
covered distances d(ct,u) for reaching cell c by
applying action u to cx1 is used. Additionally, the



distance to the orginal trajectory d(cxR?) is used also.
This leads to the cost-to-come function

g(c.u)=g(c.,)+5-d(c.u)+z-d(c.R") (15

with 6 and 7t as scaling factors. For the distance
function d(cku) to the previous cell the Euclidian
distance between the cells c+1 and ¢ is used. To
calculate the distance between o and R° an
approximation of the area between cw1and cv1 and
the closest points to the original trajectory is used as
trajectory distance function d(ct,R%. For the
approximation the average distance between ct1and
a1 to R® multiplied by the Euclidian distance
between the two points on R’ is used. An illustration
of this approximation is shown in Figure 2.
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Figure 2. Distance between avoidance trajectory and
original trajectory.

To use the area instead of the distance between cx
and R? has the advantage that the distance D(R*R")
between the resulting trajectory R* and the original
trajectory R is the sum up of the distances d(cx,R%)
from the cell sequence estimated by the A* algorithm:

D(R".R")=>"d(c.R") 17)

i
k=0

with trajectory R* containing as waypoints all cells of
the A* solution.

The complete cost of a trajectory is defined as the
cost-to-come g(cg, ) for the goal cell.

As heuristic function the Euclidian distance from
cell cx to the goal cell ¢ is used.

The trajectory R* estimated by the A*-algorithm
contains as waypoints W*, a list of connected cells
from the starting cell co to the goal cell c;. To achieve
a trajectory R' as a sparse representation of R*, a
Dougles-Peuker algorithm is used to eliminate
needless waypoints using a certain threshold. This
sparse trajectory R' makes it possible to exchange the
complete trajectories between all agents during
negotiation process.

5 TRAJECTORY NEGOTIATION

After the initial solution is found by the path-finding
component, the locally planned avoidance
trajectories are negotiated between all involved
vessels. The initial, single trajectory for the own
Vessel is planned, ignoring information about other
vessel and used as an initial offer in the negotiation.

This first trajectory is considered the desired
trajectory of each vessel, if no other vessel would
interfere. The value of other trajectories will be
calculated in between this best solution and a
hypothetical worst solution, which is usually
unfeasible. In a number of negotiation rounds vessels
broadcast their proposal for their trajectory in the set
of all trajectories. At the end of the first round,
intentions of all vessels are known, though they are
very likely to conflict. In subsequent rounds, vessels
discard sets with low value and re-plan their
trajectory in sets with a high value. The new sets are
exchanged as an offer while the global measure is
designed to let the negotiation converge to an
optimal, common solution. This procedure helps to
compensate for incomplete information without the
need to exchange state space information explicitly
and balance the costs and benefits equally among all
participants through the design of the trajectory-set
selection process.

The following steps are our adoption of an
algorithm of Steven P. Waslander (2007) who, in his
thesis, designed distributed algorithms for agents
which reach optimal solutions using concepts of
game theory without the need to maintain all
information locally at one central point. The
cooperative decentralised penalty method is modified to
work on the paths, already locally optimised by the
path-finding component, to perform a global
optimisation.

In our adopted algorithm, a number of agents
ae A follow a number of trajectories R«(W,v),
consisting of waypoints wo.. wi1 where wo is the
starting position of the vessel which moves along
that trajectory and w1 as its destination.

The original algorithm does not have a path-
finding component which already minimises the
distance from a desired optimal trajectory and the
original trajectories are fully defined on discrete time
steps. The path-finding component works on a
smaller, minimal number of waypoints, as described
in paragraph 4.1. The agent cost function is therefore
modified from the original approach to:

Ri - R, (19)

Ca(Ra):|

where R: is the desired trajectory of agent a which
is in our case a straight line from its position to its
destination. Our decentralised augmented cost
function contains no penalty function because the
interconnected constraints, imposed by trajectories in
the neighbourhood of the agents, are already fulfilled
by the path-finding algorithm and trajectories which
violate constraints cannot be generated. This leads to
a decentralised augmented cost function:

(R, 1{R},)=5.(~log(d, ~C,(R,))) (20)

The function is defined on all neighbouring
vessels 1€ A where i#a which in our first
allo:%oroach includes all other vessel. The notation

i}j refers to the fixed knowledge of the agent of
the ‘trajectories of other agents. The disagreement
point d,, a point which represents the costs of the
worst case solution, if the agents do not reach an
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agreement, is in our collision avoidance case defined
as an usually unfeasible solution, which maximises
the agent cost function. This results in a trajectory at
the fringes of the state space where the distance
between the ideal straight line trajectory is at its
maximum. We use the same penalty parameter
L 20 asInalhan et al. (2002) to ensure convergence
of the cost function.

The decentralised optimisation problem is now to
minimise equation (20) while we reduce [ in order
to reach the Nash Bargaining Solution. For an
explanation of the cost decomposition of the Nash
Bargaining Cost function from the central to the
decentralised case the reader is referred to Waslander
(2007). The detailed adopted algorithm, applied to
our problem is as follows:

1 The first local trajectory of the own vessel is
planned, using the A* component regardless of
the other vessel’s trajectories.

2 The waypoints of single trajectories from each
agent are broadcasted, after which each agent has
lal-Sets of single trajectories, one for every agent
and itself.

3 Al sets of single trajectories are merged to one set

a8, with on%»trajectory for each agent. Also an
initial value ”0 is chosen.

4 The disagreement point da is determined by
maximising the agent cost function as described
earlier.

5 Each agent performs a new search for a feasible
trajectory for itself while keeping the others fixed.
The dynamics of the system are taken care of by
the path finding component. The search
minimises the agent cost function and
consequently also the augmented cost function.
The new trajectory for the owsv agent merged with
the other fyajectories of set ~ 2 form the first full
solution @ p1

6 The full set 2 is broadcasted to all other agents
in the neighbourhood. After this step each agent
has one full solution from each other agent.

7 In a while loop the following steps are repeated
until the new planned trajectory at step t is less
different from the previously planned at step t-1
by a defined e.

8 The agents search in each received trajectory set a
new own trajectory, using the path finding
component, while keeping the other trajectories
fixed. At the end of this step the augmented cost
function gives an evaluation for each received
solution set. t

9 The agent select its preferred solution set 2
from all sets calculated which is the set with the
lowest augmented gpst.

10 The preferred set 2 is broadcasted to all agents
in its neighbourhood and anew "2 chosen.

11 The while loop begins if the condition still holds.

In the domain it is important to improve best
practises and collision avoidance manoeuvres and
not interfere with operations in a way that
application of the approach supersedes planned
situation handling by legislative institutions. At the
same time the approach should be equally beneficial
to all vessels. Bargaining as a global decentralised
search for a global Nash Solution is used to maximise
the benefits for each vessel in an equal manner, in
this case shorter trajectories. This is considered an
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additional incentive to use the system apart from
safety concerns and similar approaches were used
successfully in many different domains in the past as
can be seen i.e. in Muthoo (1999). On a ship’s bridge
our approach can be used integrated in an ECDIS
system as an expert system for mariners or it could
be implemented in the ship’s system for autonomic
collision avoidance.

6 EVALUATION

The procedure is currently evaluated in a simulation
environment, implemented by the HTWG-Konstanz.
In the situation, depicted in figure 5, two simulated
vessels start approximately 600 meters apart with
speed and heading chosen to lead to a crossing
situation and, if not handled, to a collision in about 5
minutes. However, the system anticipates the
collision and suggests a small detour for both vessels
which, due to COLREGsSs, could not be handled that
way once the vessel are in the crossing situation, but
which is a more beneficial solution for both. Figure 5
shows an ongoing optimisation with the trajectories
still being optimised and the desired trajectory of the
vessel in the lower left corner, as a straight line.

In the simulation the convergence towards a
global optimum could be observed. Since the agents
exchange each set of trajectories in the simulation in
several rounds, it could be observed that after the
first trivial solution of straight lines, the path
planning component planned a suboptimal solution
in the sense that each agent tried to avoid the
collision in the assumption that the other agents
would not change its course. In the consequent
rounds, the trajectories changed gradually towards
the optimal solution of a straight line while
minimising the augmented cost function and the
overall trajectory length, as shown in figure 4. It can
also be shown that the negotiations converge after 20-
30 rounds towards an acceptable solution, and
alternate between good solutions after 5-10 rounds.
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Figure 4. Average summed trajectory length in meters for
all vessels in each negotiation round
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Figure 5. Two vessel just before a crossing situation.

The stability of the solutions found varied in the
beginning because, in contrast to the constraint
penalty and trajectory distance function used by
Waslander (2007), our path finding led a to more
complicated convergence behaviour. Towards a
Pareto optimal solution, each vessel accepted
solutions within a strictly optimising margin,
however within this margin solutions were
alternating between favourable solutions for each
vessel.

Collision free trajectories could be found in most
of the trials after the first or second round, which
were considerable detours but safe. The approach is
already tested on a test bed on Lake Konstanz using
pleasure crafts. First results are in line with the
simulation outcomes.

7 CONCLUSION

The procedure applies the negotiation schema from
Waslander (2007) in the maritime domain and
utilises a path-finding component to obey COLREGs
and include the dynamic model of the ship. The
negotiation converges towards a global optimum by
using local optimisation and exchanging only
trajectories. This leads to a collision free sub-optimal
solution for all participating vessels after just a few
negotiation rounds.

After first promising results from the simulation
the next step is to verify the results in detail in the
test beds on Lake Konstanz and in the eMIR test bed
at the German Bight for merchant vessels and
measure the impact of currents and changing
situations on the negotiation progress.
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