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1 INTRODUCTION 

Autonomous shipping is no doubt a future of the 
maritime industry [21]. According to Rolls-Royce, a 
fully automatic ship will go to its first voyage by 2035 
[21] which means the need for related research now. 
However, autonomous shipping poses a great 
challenge for information technology and research in 
the field of onboard control systems. In contrast with 
autonomous cars, autonomous ships will operation in 
much larger environments travelling by much longer 
distances. The following types of ships with regard to 
autonomy are defined in research: ordinary ships, 
where all decisions are made by the crew and all 
operations are performed by the crew, smart ships, 
where the crew still makes a decision, but the 
operations are performed automatically and 
autonomous ships where both decisions and 

operations are automatic [12]. Smart ships are not 
guaranteed to have the crew on board. Such ships can 
be controlled from a remote control centre [6, 37].  
However, it seems doubtful that smart ships with 
fully remote control can be implemented because 
such ships would require stable network connection 
with the control centre along the entire route of the 
voyage, which may be difficult to secure in the case of 
trans-ocean voyages [37]. Therefore, smart ships are 
expected to have some degree of autonomy to make 
them able to operate amid the absence of connection 
with the control centre. It is expected that an 
autonomous ship can also be controlled remotely, 
therefore there can be stages of fully autonomous 
operation and remotely controlled stages within a 
single voyage [35]. Remote control stages may be 
required to navigate the ship in the most dangerous 
or difficult circumstances, e.g. at nearshore areas and 
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at ports [37]. In this paper we focus on fully-
autonomous ship operations, thus regarding 
autonomous ships and smart ships that operate in the 
autonomous regime. 

This paper is dedicated to the challenges in the 
field of information technology and 
telecommunication with regard to smart and 
autonomous ships.  It is expected that the success in 
these fields will significantly affect the maritime 
industry as being the most important milestone in the 
journey towards autonomous shipping [35]. 

Within this paper, we assume that an autonomous 
ship is controlled and monitored by a single onboard 
control system. This system runs on the onboard 
computers that are connected into the onboard 
computational network. The paper describes the 
design neither of the onboard control system nor the 
computational network, but refers to them when 
describing their components responsible for tackling 
the challenges arising from the emergence of 
autonomous and smart ships. 

This paper is organized as follows. Section 2 
provides an overview of techniques that can be used 
to plan safe and optimal routes for autonomous ships. 
Section 3 is dedicated to automatic ship handling, 
ensuring its seaworthiness and safety while following 
the route, keeping the ship on the route, and collective 
operations of multiple autonomous ships. Section 4 
describes the remote monitoring of a ship. Section 5 is 
dedicated to the robustness of the onboard control 
system that controls the ship. Section 6 concludes the 
paper. 

2 AUTONOMOUS NAVIGATION 

Route planning is an important feature of the ship’s 
onboard control system. The crew uses this feature to 
plot efficient routes taking into account weather 
conditions, legal regulations, fuel efficiency and other 
requirements [17]. If the system fails to plot an 
effective route or the resulting route is not suitable for 
some reason, the crew still can intervene and 
introduce corrections. In case of an autonomous ship, 
there is no crew to correct the inefficient route. 
Planning an efficient route for an autonomous ship is 
a more complicated task than in the case of an 
ordinary ship [6]. The onboard control system needs 
to be able to plan as efficient routes as possible 
without any human intervention. 

Within this paper, we define an efficient route as a 
route that is the shortest route possible in terms of 
travel time that does not put the ship in danger in any 
way. This definition can be extended to assume 
additional requirements. For example, the route 
planning system can take fuel consumption into 
account, in this case, the system would try to achieve 
a compromise between travel speed (and thus travel 
time) and fuel consumption possibly by using slow 
steaming. 

In case of an autonomous ship, there can be two 
approaches for planning a route. In the first case, the 
route is planned by the onboard control system of the 
ship, in the second case, the route is planned by a 
shore control centre and then transmitted to the ship 

[36, 41]. In the latter case, the route could be evaluated 
by an expert before being transmitted to the ship [41]. 
In both cases, the input data for the route planning 
procedure is the destination point and the additional 
constrains for the route (e.g. fuel consumption, arrival 
time and so on). 

Weather conditions affect the ship’s safety and its 
ability to follow the route. Taking the weather into 
account not only helps to avoid negative effects on the 
ship [35,41] but also reduces the economical costs of a 
voyage by reducing the travel time and fuel 
consumption [16, 43]. Therefore, the ability to take 
weather conditions into account is essential for the 
route planning system [17, 23, 38]. 

One of the most common algorithms used for 
pathfinding is A*. This algorithm is able to find the 
shortest path between two vertices of a graph or grid. 
It is possible to tune the algorithm to take into account 
requirements specific for a particular task, e.g. 
weather conditions [17], ice [45] or in order to reduce 
the computation time [28]. However, A* is known to 
be highly dependant on the heuristic function used to 
determine which vertices to investigate and for its 
high memory consumption in case of the large search 
spaces (grid with many vertices) [33]. One can reduce 
the complexity by reducing the number of points the 
grid has, however, this reduces the freedom of the 
algorithm to choose movement direction thus 
reducing the optimality of the route. 

Planning a route for a ship is a complex task that 
requires attention to many factors affecting routes 
safety and optimality. The navigators plan routes 
using their experience and background [35]. Building 
this experience into a formal route planning algorithm 
like A* or Dijkstra’s is a difficult task. We argue that 
the maritime industry could benefit from employing 
algorithms and techniques that belong to the fields of 
Artificial Intelligence, Machine Learning and Deep 
Learning. We can divide these promising techniques 
into two groups: those that use a kind of agent that is 
trained from its own or external experience and those 
that are heuristic, fuzzy, or competitive approaches to 
find the solution for the task in question [30]. 

Two of the most well-known techniques of the first 
family are Reinforcement Learning and its variant, 
Deep Reinforcement Learning. Reinforcement 
Learning uses a table π, called policy, that helps 
understand why the agent took particular action 
being in a particular state, thus making the decision 
process interpretable. This table is designed during 
the preparation stage of the training process and must 
contain all of the possible agent states and all of the 
possible actions the agent can take. Deep 
Reinforcement Learning does not require any 
predefined states and table π, instead, it uses a deep 
neural network that takes state representation as 
input. Deep Reinforcement Learning has 
demonstrated good results in training an agent to 
play Go [39], chess [40] or video games [44], making it 
possible to beat a champion human player. However, 
in practice, even an expert often fails to design a good 
reward function for the agent, thus making it possible 
to maximize the reward without actually completing 
the task [22]. Moreover, currently, there is not enough 
research in the field of Reinforcement Learning about 
solving problems other than games [22]. Another 
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difficult here is that the training process assumes that 
the agent needs to observe all possible states and take 
all possible actions for any of them to test what 
happens, thus making the training process 
computationally difficult. 

We argue that there is still not enough research to 
employ Reinforcement Learning to planning a route 
for a ship. Another obstacle on this path is that the 
agent needs an environment that it interacts with 
while solving the task [22]. As we have already 
pointed out, the agent needs to observe all possible 
situations, including those that lead to maritime 
accidents, moreover, it needs to observe these 
situation several times with slightly different 
properties. Therefore, using natural environments as 
training environments and real ships as agents to 
train the route planning system has unacceptably 
high costs, not to mention the related dangers. 
Another approach is to simulate the natural 
environment.  In this case, all of the processes that 
take place in Nature and affect the ship are modelled 
and this modelled environment is used to train the 
agent. However, this approach requires the model to 
represent the real processes as precisely as possible so 
that the agent can use its knowledge gained from the 
simulation in the real-life tasks. This poses a difficult 
task. 

We, therefore, argue that we should not use agents 
that are trained from their own experience for 
planning ship routes due to high costs of real 
experiments and extremely difficult development of 
simulators. 

We, therefore, think that the route planning 
algorithms should be based on approaches that can 
adapt to a changing environment and can handle 
complex success criteria but do not require 
preliminary training. Genetic algorithms are one of 
such approaches [20]. The fitting function can be 
expressed as a weighted sum of values describing 
different route’s properties thus making the algorithm 
to generate a good route through maximizing these 
value. Genetic algorithms can be effectively 
parallelized using the island model, taking advantage 
of distributed onboard computation systems [7, 18]. 
Since in every moment a genetic algorithm operates 
on a set of possible solutions, it is possible to get a set 
of Paretooptimal routes as a result and choose the 
final one using another examination technique [25].  
Another advantage of genetic algorithms is that it is 
possible to restrict the total computation time allotted 
for planning the route and still get an acceptable sub-
optimal solution [18]. 

As we have already said, navigators use their 
experience to judge on the route’s quality. Experience 
is a very subjective and personal concept so it could 
not be formalized to be used by an automatic route 
planning systems. We propose to use a set of 
characteristic coefficients that can be used to measure 
route’s properties thus making it possible to compare 
routes and select the best one. The fitting function of a 
genetic algorithm can be represented as a weighted 
sum of this coefficient values. These coefficients 
express how close the route is to the ideal route. 
Therefore, professional navigators could be 
interviewed about what is the optimal and safe route 

and what is the ideal route, and then these qualities 
can be expressed through formalized coefficients. 

Here we propose several basic coefficients that can 
be used as a starting point.  This  set  can  be  
extended with additional coefficients designed for a 
particular ship. Moreover, different routes for the 
same ship could be planned while taking into account 
different coefficients that were selected according to 
the cargo, technical conditions or other factors. 

The safety coefficient can be defined as 

( ) ( )1 r
oS r P= −  (1) 

where ( )r
oP P is the probability of a negative encounter 

(e.g. collision, rough weather, severe pitching) to 
occur while the ship follows the route r. The shorter 
route is a better route, therefore the distance 
coefficient can be defined as 

( )
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where ( ),s d  is the length of the line segment 
between start and destination points and lr is the 
length of the route being examined. The closer the 
route to the straight line, the greater the value of D is. 
Since it is not possible to find a shorter way between 
two points than the straight line, this coefficient can 
be used to measure the optimality of the route with 
regard to its length. Another coefficient related to 
optimality is the time coefficient 
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where ( ),s dt  is the time needed for the ship to travel 
along the straight line ( ),s dt  with the maximum 
technic-ally possible speed and tr is the time needed 
to travel following the route r. This coefficient helps 
ensure that the route is not only short in terms of 
distance but that it will not take long to follow it. 
According to [?], the number of manoeuvres the ship 
needs to perform during the voyage also affects the 
route’s optimality and the most important manoeuvre 
is the change of direction. The change of direction 
usually happens at a waypoint that joins two edges of 
the route each of which defines new direction. There-
fore, we can define the simplicity coefficient as 

( ) 2

r

C r
p

=  

where pr is the number of waypoints in the route. 
Every route has at least two points: start and 
destination, and the simplicity coefficient encourages 
the route to have as little points as possible. 

Route planning algorithm needs to be robust and 
able to handle unexpected situations. It also needs to 
be predictable and its output needs to be 
interpretable. That is why designing such an 
algorithm requires extensive testing and verification 
[35]. Formal algorithms like A* or Dijkstra’s are 
proven to be able to find the best solution but they 
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pose strong requirements for the environment and the 
input data [11]. Non-formal algorithms like genetic 
algorithms may pose less strict requirements but there 
can be no formal proof of correctness. Therefore, 
testing and verification of such algorithms require 
simulation of the common and extreme situations in 
order to validate their behaviour. There are several 
techniques that can be used to verify and validate the 
correctness of models and algorithms while using 
simulation modelling, the Balchi’s scheme is one of 
them [1, 2]. 

3 AUTONOMOUS SHIP HANDLING 

After the ship has acquired the route, it needs to 
follow it. This means the onboard system needs to be 
able to handle the ship autonomously. This is 
expected to be the most difficult component of the 
onboard control system since it needs to take into 
account different aspects of ship handling, including, 
but not limited to, keeping the ship on the route and 
ensuring that the ships seaworthiness is satisfactory 
[35]. 

3.1 Keeping the ship on the route 

Keeping the ship on the route is the first responsibility 
of the onboard control system when underway. The 
system analyzes the ship’s motion and checks that the 
actual route does not deviate from the prescribed one 
more than allowed. In the case of discrepancy, the 
control system orders the propulsion system of the 
ship to perform actions to resolve this discrepancy 
[24]. 

Since it is expected that the prescribed route allows 
some sort of freedom (i.e. it does not prescribe the 
exact waypoints), another important aspect is 
planning the exact manoeuvres prescribed by the 
route [37]. For example, if a route prescribes the ship 
to go under a bridge, the onboard control system 
must issue orders to make the ship go under the 
bridge’s arc by a safe distance from the columns and 
ensure that the arc is high enough. Although bridges, 
canal locks, and other infrastructure facilities can be 
detected during the planning stage, the actual route 
affects the moment of time when the ship reaches the 
facility and ship’s exact position relative to it. That is 
why the ship needs to be able to plan the manoeuvres 
itself before performing them thus requiring the 
onboard control system to analyze the current 
situation and issue orders with regard both to the 
manoeuvre and the environment. Therefore, this 
component of the control system needs to be 
universal enough to be able to deal with different 
manoeuvres and surrounding situations. 

It is expected that the onboard control system can 
be based on AI approaches [35] thus being able to 
handle situations that differ from those observed 
during the design stage. 

The onboard control system can benefit from tree-
based situation classification approach [31]. In case of 
such an approach, there is a set of classifiers 
organized as a tree. Each classifier takes the 
representation of the situation that includes, but is not 

limited to, images from the cameras that capture 
images or video of the surroundings, radars that 
observe the surroundings, gyroscopes and 
accelerometers that measure the ship’s state and other 
sensors. The root classifier that corresponds to the 
root vertex of the tree performs the initial 
classification of the situation, whether it corresponds 
to an open area, a bridge, locks, and so on. This initial 
classifier makes the top-level decision detecting which 
type the situation belongs to and does not detect its 
internal properties. Once the generic type of the 
situation is determined, the situation representation is 
passed to the next level of the tree. Classifiers of this 
level are specialized to observe situations of a specific 
type and are able to detect different subtypes of them. 
Figure 1 illustrates the tree-based classification 
approach. 

 
Figure 1. Sample tree-based situation classifier. Each level 
refines the output of the previous one until the final 
decision is made. 

Therefore, each level of the classification tree 
refines the decision made by the previous level thus 
enabling the onboard control system to capture all 
important properties of the situation [31]. The 
refinement process finishes when the tree traversal 
process reaches a leaf that contains navigation 
instructions suitable for the detected situation [31]. 
The use of a classification tree helps to keep each 
classifier specialized on a particular task thus making 
it easier to design it, train it, maintain its operation, 
interpret the output or insert new tree branches (thus 
making the tree aware of new situations) leaving 
other branches intact. In addition, the classifiers can 
be independently replaced or updated according to 
the requirements. 

The classifiers could be based on Deep Neural 
Networks or use simpler machine learning models 
suitable for the task being solved by the classifier. 
Convolution Neural Networks have demonstrated 
good results when processing image and video data 
or other spatiallydistributed values [15]. If the inputs 
for the network contain both image and non-image 
data, it is possible to train a two-branch neural 
network (figure 2), where one branch handles image 
data and another one non-image data and then they 
join their outputs for further processing. Twobranch 
neural networks have demonstrated good results 
when processing mixed data of different nature [46]. 
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Figure 2. An example of neural network with two branches. 

3.2 Ensuring the route correctness 

As we have already said, the route’s quality is 
expressed through a set of characteristic coefficients 
that describe the route’s properties. These coefficients 
can also be used to ensure that the actual route does 
not deviate from the prescribed one in a way that may 
lead, in the long run, to an accident. 

Consider the prescribed route and the actual route 
that is being plotted during the voyage. In order to 
check that the actual route is not going to cause an 
accident we can to compute its characteristic 
coefficients during the voyage taking into account the 
actual locations of the waypoints and their properties, 
and then compare these coefficients to those 
computed for the prescribed route. This lets to 
determine which properties of the actual route are 
worse than expected. Another approach is to plot the 
sum of the characteristic coefficients and thus decide 
whether the trend is positive or stable (the route 
quality either increases or stays the same) or negative 
(the route quality decreases) [30]. Figure 3 shows an 
example of a route quality plot. 

 
Figure 3: Route quality decreases over time, this indicates 
negative trend. 

According to the plot 3, the route quality decreases 
with time, which means that if the ship does not re-
plan the route, an accident may happen [30]. 

3.3 Ship collective intelligence 

Autonomous and smart ships are expected to be 
equipped with an onboard control system that makes 
all of the decision related to ship handling. As inputs, 
this system takes data from the sensors installed 
onboard.  In some situations, however, an 
autonomous ship needs to take into account the 
actions of the surrounding ships in order to maintain 
safety and comply with COLREGs [13, 35]. Consider 

two possible cases: in the first case there are only 
ships that operate fully automatically, and the second 
case when at least one of the ships is operated by 
humans. In both cases, the ships need to pass safely 
through a particular area. 

In the first case, when there are only smart ships, 
these ships can communicate in order to infer a 
decision [36]. The main difficulty here is to make all of 
the ships to come to the same decision, i.e. to make all 
of the ships agree with it. All ships are considered 
equal, i.e. there are no primary ships that make 
decisions and secondary ships that obey. In this case, 
they can use a distributed consensus algorithms like 
PAXOS [26] or Raft [34] that are widely used in 
clustered and distributed computing. These 
algorithms help a set of distributed computing nodes 
get the same result for a particular task, thus coming 
to a consensus. These algorithms can be used by 
autonomous ships to come to a consensus about their 
actions in the case of an encounter. Both PAXOS and 
Raft guarantee that all distributed nodes end up with 
the same state of the finite automaton that forms the 
core of the algorithms. This means that all of the ships 
in question are able to agree on how to behave in 
order to safely pass through the area. 

In the second case, the autonomous ships and 
ordinary ship also need to communicate in some way 
in order to agree on their actions [36]. However, in 
this case, the ordinary ship is operated by humans 
that need to be able to communicate with machines 
operating other ships. This issue can be resolved by 
installing onto ordinary ships a special 
communication unit that is able to communicate with 
smart ships (standardization required). The crew uses 
this unit to explain their plans on the safe passage 
through the area in question so that the autonomous 
ships are aware of the human’s decisions and thus can 
infer their own. The smart ships can still use PAXOS 
and Raft to come up with a decision taking into 
account human’s opinion. Another approach is to 
make this onboard unit a part of the consensus 
framework. The ordinary ship also takes part in the 
decision process and is considered as a member of a 
distributed consensus network. However, in this case, 
the crew of the ordinary ship needs to obey the 
collective decision. 

3.4 Ensuring the ship’s seaworthiness 

One of the most important tasks the crew needs to 
care about is the ship’s seaworthiness. Here we 
concentrate on seakeeping performance criteria, i.e. 
the ability of a ship to effectively and safely deal with 
the environmental conditions, i.e. pitch and roll, 
buoyancy and stability. In the case of an ordinary 
ship, the crew is responsible for maintaining these 
criteria, but in the case of an autonomous or smart 
ship, this needs to be done automatically. Since there 
is no crew on board, no one can perform actions to 
prevent an accident that is about to happen. The 
onboard control system should preliminarily detect 
such situations and take actions not just to prevent 
them, but to avoid the related risks [30]. There is a 
known controllability issue: under some 
circumstances, the ship may not be under a full 
control [35], therefore the onboard control system 
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needs to take into account that the issued orders may 
be performed only partially, or have no effect. 
Another difficulty is the uncertainty in the ship’s state 
data: the data that is thought to be actual and correct 
may be out of date or incomplete [42]. 

Waves affect the seakeeping characteristics 
inducing rolling and pitching, which, in turn, affect 
the ship’s stability. Waves are highly stochastic, non-
stationary process and therefore predicting its 
parameters is a difficult task [8].  Although wave 
parameters can be drawn from a wave spectra [19], 
each spectrum provides approximate results and thus 
needs to be tuned for a particular area [4]. The tuning 
requires long time series of wave parameters, which 
could not be collected during the voyage. Moreover, a 
ship, in general, does not have the machinery 
required to measure wave parameters, e.g. period or 
wavelength. The possible solution is to install 
accelerometers and gyroscopes onboard and directly 
measure rolling and pitching parameters. The data 
received from these sensors form a time series that 
can be analyzed with Deep Neural Networks, 
possibly predicting future parameters [10,48], 
anomaly detection techniques or other approaches to 
identify patterns and make decisions accordingly. 

Hull consistency affects the ship’s buoyancy and 
stability. In case of a breach, the hull’s compartment 
gets flooded thus changing the list angle and reducing 
ship’s stability. Additional water volume inside the 
hull also reduces the ship’s buoyancy. Therefore it is 
important that the onboard control system is able to 
monitor the hull’s integrity and compartment 
flooding. This can be achieved using Hull Monitoring 
System [14] and flooding detection sensors installed 
in all compartments. Hull Monitoring System consists 
of several sensors located around the hull measuring 
tensions and stress of the hull caused by the sea state 
[14, 47]. The collected data is used to analyze the 
effects of the sea state and the ship’s movements. The 
data can be used to predict possible breaches caused 
by extreme wave effects, e.g. slamming and detect 
existing breaches. Flooding detectors provide the data 
whether a compartment is flooded and to what extent. 
The onboard control system uses the data from the 
Hull Monitoring System and flooding detectors to 
ensure the hull’s integrity. In case of flooding the 
control system uses stability curves to select the 
appropriate actions (e.g. to flood the opposite 
compartment). 

Since Machine Learning is known to be able to 
handle data with missing values [10] (e.g. because of 
temporary failure of a sensor) and adapt to changes in 
data patterns happened since training [27], it is 
expected that Machine Learning and Deep Learning 
will form a general framework for the analysis of the 
ship’s state needed to ensure it’s seaworthiness. To be 
able to analyze its state the ship needs to measure its 
static and dynamic motion parameters, like roll 
angles, roll acceleration, and amplitude. Therefore, it 
should be equipped with sensors, accelerometers and 
detectors and Hull Monitoring System that measure 
the ship’s state. These sensors form the digital model 
of the ship. With this model available it is possible not 
only to analyze the instant ship’s state but also to 
predict the future development of the current 
situation [32]. 

4 AUTONOMOUS SHIP REMOTE MONITORING 

In order to ensure seaworthiness, the smart and 
autonomous ships will be equipped with a great 
number of sensors that measure their dynamics. This 
data can be transmitted to the onshore control centre 
thus making it possible to remotely analyze the ship’s 
behaviour [12, 13, 37]. Because of the distributed 
nature of the onboard ship machinery, a ship can be 
thought of as an IoT-enabled multiagent system 
where each machinery unit is an independent agent 
[35]. The amount of data generated by these IoT 
agents for a single ship is expected to make up a large 
dataset [35]. If a shipowner has a fleet of smart ships, 
the amounts of data increase by orders of magnitude. 
However, in the latter case, the shipowner can benefit 
from the large datasets collected from the entire fleet 
by getting the overall statistics computed using the 
data from all of the ships, which increases prediction 
accuracy. This, in turn, requires the ship owners to 
have a Data Science or Data Engineering departments 
to successfully handle, analyze and gain insights from 
this data using Big Data and Machine Learning 
techniques. It is expected that the entire marine 
industry would benefit from these datasets and 
related software [3]. 

Collecting datasets with the data related to the 
ship’s operations enables ship owners to employ 
maintenance prediction techniques [6, 37]. These 
techniques let the ship owners analyze the behaviour 
of the onboard machinery and predict whether it is 
going to go out of order. This lets the owners 
optimally plan the maintenance operations [35, 37]. 
Actually, such a monitoring system can be installed 
on an ordinary ship and the monitoring data can 
available both to the shipowner and the crew. 

5 ONBOARD CONTROL SYSTEM ROBUSTNESS 

The main source of trouble onboard is the crew [12]. 
Since there is no crew on board, its effect on the ship’s 
safety is reduced, making technical issues the main 
concern. In the case of an autonomous ship, the 
onboard control system becomes a single point of 
failure [13]. If the onboard control system goes out of 
order, the ship is not able to operate. Since the ship 
has no crew on board, there is no way to repair the 
failed systems. Therefore, the onboard control system 
should be able to detect its own failures and either 
entirely recover from them or rebalance the workload 
in such a way that the components that are still alive 
can keep the system operating. 

To ensure robustness, the development team needs 
to use distributed approaches, where a computer 
system consists of several network nodes connected to 
accomplish a single task. If a single node goes out of 
order, another one takes its workload. One possible 
solution for that is to adopt the multi-agent approach, 
also known as actor approach. There are different 
actor implementations available for different 
programming languages and environments [5, 9, 29]. 

In the case of the actor approach, the software 
system is represented as a set of independent 
components (called actors). The actors communicate 
by sending messages, not through direct interaction 
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by function calls like in traditional software systems. 
Since the actors communicate through message 
passing, different actors can be located on different 
network nodes [5] enabling effective development of 
distributed applications. Here, the sender actor does 
not need to know where (on which network node) the 
receiver is located and the underlying actor 
framework hides all the complexity of the network 
communication [5,9] making it easier for the 
developer to concentrate on the domain, not 
infrastructure. 

The distributed nature of applications built using 
the actor approach makes them more error-resistant 
than traditional centralized applications. Once a 
network node goes down, the actor framework 
detects this failure and deploys the actors that have 
been on the failed node on the nodes that are still 
alive and routes the messages to the new instances [5]. 
Each actor is responsible for persisting its internal 
state and loading it once it is deployed, thus making 
the application survive through node failures without 
data loses. 

Since the ability to operate regardless of the 
failures is essential for the onboard control systems of 
autonomous ships, we argue that they can benefit 
from adopting the actor approach making them more 
error-resistant and letting to gracefully recover from 
failures. It is important to distribute the network 
nodes across the entire ship in order to ensure that 
physical damage or flooding of a single compartment 
does not lead to the destruction of the entire network. 

Nevertheless, the actor model is not able to 
overcome hardware failures if the particular 
hardware exists as a single instance. Therefore, 
sensors that are used to measure the ship’s state need 
to be duplicated in order to increase their robustness. 

However, it is still possible that the onboard 
control system or the onboard machinery goes out of 
order. It is expected that in this case, a ship should 
activate a kind of fail-to-safe mode, that lets it safely 
operate using the machinery it still has and wait for 
the assistance from the onshore services [37]. 

6 CONCLUSION 

There is still much to do before an ocean-going 
autonomous ship goes to its first voyage. This means 
the need for research on topics related to ship 
architecture, legal regulations, port operations, 
information technology, and others. In this paper, we 
have discussed the information technology aspects of 
the autonomous and smart ships. It is expected that 
such ships will have an onboard control system 
responsible for planning route, handling the ship 
during the voyage and monitoring its state. 

We argue that the route planning component 
should not be implemented using techniques that 
require training because this needs a great number of 
real-life experiments including those that can lead to 
an accident; otherwise, it requires a complicated 
simulation environment that precisely models the 
ocean or the agent knowledge would be wrong. 

Ship handling during the voyage is expected to be 
based on intelligent techniques that analyze the ship’s 
state and the environment around it making decisions 
on what actions to perform in order to keep the ship 
on the route and maintain its seaworthiness. 

The need for the onboard control system to 
monitor the ship’s state and the environment means 
that the autonomous and smart ships will be 
equipped with a great number of sensors that capture 
the properties of the ship’s movements and the 
surrounding environment. This enables for remote 
monitoring of the ship’s state and actions thus making 
it possible to make decisions based on collected 
datasets. This also enables predictive maintenance 
thus reducing the downtime due to spare part 
delivery and reducing costs. The maritime industry 
will also benefit from the large datasets collected 
during autonomous ship operations. 

In order to ensure the robustness of the onboard 
control system, it can be developed using the actor 
approach thus making it inherently parallel and 
distributed. 

Most of the technology needed to support the 
onboard control system already exists but needs to be 
adapted to the requirements of the maritime industry 
to make the future of ocean transportation closer. 
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