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ABSTRACT: The aim of system safety, as a sub-discipline of engineering, is to implement scientific, engineering
and management knowledge to provide identification, evaluation, prevention, and control of identified hazards
throughout the life cycle and within the defined boundaries of operational effectiveness, time, and cost. By
utilizing risk analysis, the system safety function can assign expected values to certain hazards and/or failures
to determine the likelihood of their occurrence. Autonomous and unmanned shipping are emerging topics,
where technologies needed for their successful implementation in global fleet already exists and it is crucial to
demonstrate that they are as safe as conventional ships. Through literature it is suggested that by eliminating
human error as a cause of 53% of maritime accidents, autonomous and unmanned shipping will increase
maritime safety, but it is important to consider that new types of accidents can appear. Considering that
autonomous and unmanned ships need to operate with unattended ship machinery for extended time periods
and that empirical data is not available, new framework for reliability assessment is needed. The aim of this
paper is to provide overview of risk approaches that can be applied for reliability assessment of autonomous
and unmanned ship. Within this paper, literature review is performed where reliability methods and their
application to autonomous shipping are outlined. Furthermore, Bayesian network is selected as most promising
one and further discussed.

1 INTRODUCTION challenges is related to the design of safe autonomous
ships. Taking into account that, at time being, there is

As a result of continuous development of novel nNo detailed regulatory framework for autonomous

marine systems, in the last 20 years, autonomous and
unmanned ships have become subject of intense
research in academia and industry. This resulted in
numerus research projects and scientific articles. The
motivation for introduction of autonomous and
unmanned ships lies behind expected benefits, such
as improved safety level, increased energy efficiency,
reduced operational and lifecycle costs, and
environmental footprint [1,2,3,4], however all these
claims need to be justified. Despite intense research,
the introduction of autonomous and unmanned ships
is associated with several challenges. One of main

and unmanned ship, conventional maritime safety
approaches and tools cannot be used. New
approaches such as probabilistic risk assessment [5],
are required for carrying out the safety assessment of
next generation autonomous ships [6]. This is
connected to a set of other challenges, such as the lack
of standardised assessment methodology, acceptable
risk levels, statistical data, hazardous events and
scenarios and so on [7,8,9].

In reality, the introduction of autonomous ships in
the maritime transport would result in disruptive
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changes in all layers of maritime industry. The novel
systems required for successful operation of
autonomous ships are highly complex, software-
intensive and are composed of not only hardware
components but also numerous sensors and
communication devices. Although some studies have
claimed that autonomous and unmanned ships can
increase maritime transportation safety [10], the safety
of autonomous systems has to be verified in detail.
Although there are some prototypes thar are tested in
controlled environment, autonomous ships are not yet
commercially applied. It is important that the
minimum requirement for an autonomous vessel is
for it to be at least as safe as conventional manned
ships [11], presenting an initial high-level demand.
Therefor, all potential risks, hazards and disruptive
events need to be comprehended and evaluated.

Survey conducted by van Cappelle et al. [12]
analysed technology readiness for remote, unmanned,
and autonomous operations. Results indicate that
technology is mature enough and the next step is to
successfully implement it on ships to increase
autonomy and reduce crew. Costs savings and
changes in the design of the unmanned autonomous
bulk carrier are outlined by Kretschmann et al. [13].
Besides crew savings, improved energy efficiency,
safety and hull optimization are expected. Jovanovi¢
et al. [14] simultaneously investigated the
applicability of autonomous shipping and alternative
power options for the Croatian ferry fleet. Both
economical and environmental benefits are outlined,
with the electricity-powered autonomous ship being
most attractive from both points of view. Peeters et al.
[15] provided a solution for road-based freight
transport in Europe by employing unmanned inland
cargo vessels. Guidelines are also given for design,
control, and interaction with other vessels and the
environment [15].

Thieme et al. [16] reviewed 64 risk models
published since 2005 to investigate the applicability of
modelling approaches for autonomous ships. The
analysis results indicated that most models use
historical or published data, and a combination of
these to obtain the input for risk approaches.

One of the driving forces behind the development
of autonomous and unmanned ships is that they are
expected to decrease maritime accidents related to
human error. However, it should be noted that
autonomy will bring out new types of accidents
related to the implementation of advanced
technologies, transitions between automatic and
manual control, situation awareness, etc [10]. Radseth
and Tjora [17] presented system architecture for an
unmanned merchant ship, developed within Maritime
Unmanned Navigation through Intelligence in
Networks (MUNIN) project. For MUNIN autonomy is
constrained and Shore Control Center (SCC) is crucial
for successful operation. Unmanned ship systems are
classified into 10 functional groups and Hazard
Identification (Hazld) method is suggested to assess
the risks [17]. Redseth and Burmeister [3] performed
HazId for an unmanned merchant ship and identified
65 main hazards of which several were classified as
unacceptable (interaction with other ships; error in
detection of small objects; propulsion system
breakdown; heavy weather manoeuvring; collision in
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low visibility). Fault Tree Analysis (FTA) and Event
Tree Analysis (ETA) are employed to assess hazards
for unmanned underwater vehicles, with a focus on
human and organisation factors [18]. The results
indicate that the risk in autonomous underwater
vehicle operation can be reduced by applying the risk
management framework. A risk model for
autonomous marine systems utilizing the Bayesian
belief network to assess the human-autonomy
collaboration performance, was developed by Thieme
and Utne [19], outlining that the reliability of
autonomous functions and situational awareness have
the highest probability of malfunction. Starting with
the cause root of a potential accident, Wrébel et al.
[20], established a three-level safety model. Beginning
with an accident event, to which unmanned vessels
are susceptible, accidents are divided into navigation,
engineering, stability and other related. Both manned
and unmanned systems with different autonomy
levels are considered by [21]. Emphasis is on safety
assessment that includes the whole lifecycle of an
unmanned ship, suggesting that uncertainties and
knowledge gaps should be taken into account rather
than probability. Also, online risk model, developed
as part of the unmanned ship, should provide
improved performance during the testing and
verification phase. Five categories (unsafe acts,
preconditions, unsafe supervision, organisational
influences, and external factors) of the accident causes
are applied in research conducted by [4] to assess the
potential impact of unmanned vessels on maritime
transportation safety, outlining the benefits and
drawbacks that unmanned vessels have regarding
maritime transportation safety. The System-Theoretic
Process Analysis (STPA) framework is used to create a
preliminary risk assessment of remotely-controlled
merchant vessels to provide design recommendations
[22]. 55 risk influencing factors, categorised into four
categories (human, technology, environment, ship),
that can affect navigational safety of autonomy level 3
MASS are defined by [23]. Taking into account the
lack of knowledge and experience, complexity and
limited ability for verification of autonomous systems,
[24] presented an online risk model. The online risk
model is developed by combining STPA and BBN. By
integrating an online risk model and ship control
systems, Johansen and Utne [25] demonstrated that
improvements can be achieved for both safety and
costs. Yang and Utne [26] showed that a combination
of different risk analysis methods can contribute to
the improvement of an online risk model. Table 1
provides an overview of risk analysis methods used
for the safety assessment of autonomous and
unmanned ships.

2 BAYESIAN NETWORK

Belief networks (also called Bayes’ networks or
Bayesian belief networks) are a way to depict the
independence assumptions made in a distribution.
Their application domain is widespread, ranging from
troubleshooting and expert reasoning under
uncertainty to machine learning. Bayesian Network
(BN) is a graphical structure for representing
probabilistic relationships among a large number of
variables and making probabilistic inferences using



those variables. A BN is a DAG with the nodes
representing the variables and arcs representing their
conditional dependencies [27]. One of the main
advantages of BN is that they allow interface based on
observed evidence. For the random variable X1 and Xz
Bayes rule states [27]:

Table 1. Overview of risk analysis methods and their
applications.

Risk method  Literature Type of problem
Bayesian Wrobel et al. (2016) [20] General overview of
Network relationships between
(BN) safety features of
unmanned vessels.

Thieme and Utne Human-autonomy

(2017) [19] collaboration assessment.

Utne et al. (2020) [24] Online risk modelling for
autonomous ships.

Johansen and Utne Supervisory risk control

(2022) [25] of autonomous surface
ships.

Event Thieme et al. (2015) [18] Risk management

Tree framework (RMF) for
Analysis unmanned underwater
(ETA) vehicles (UUV).

Wrobel et al. (2016) [20] General overview of
relationships between
safety features of
unmanned vessels.

Fault Tree Thieme et al. (2015) [18] Risk management
Analysis framework (RMF) for
(FTA) unmanned underwater
Hazard vehicles (UUV).
Identification Redseth and Tjora Information and
(HazlId) (2014) [17] Communication
Technologies (ICT)
architecture for an
unmanned ship.

Rodseth and Risk Assessment for an

Burmeister (2015) [3] Unmanned Merchant
Ship.

Johansen and Utne Supervisory risk control

(2022) [25] of autonomous surface
ships.

Preliminary ~ Yang and Utne (2022)  An online risk model for

Hazard [26] autonomous marine

Analysis systems.

(PHA)

Procedural Yang and Utne (2022)  An online risk model for

Hazard and [26] autonomous marine

Operability systems.

Analysis

(HAZOQOP)

Risk Thieme et al. (2015) [18] Risk management

management framework (RMF) for
unmanned underwater
vehicles (UUV).

System- Wrobel et al. (2018) [22] Safety of remotely-

Theoretic controlled merchant

Process vessel.

Analysis Utne et al. (2020) [24] Online risk modelling for

(STPA) autonomous ships.

Johansen and Utne Supervisory risk control

(2022) [25] of autonomous surface
ships.

Yang and Utne (2022)  An online risk model for

[26] autonomous marine
systems.

What if Wrdbel et al. (2017) [4]  Potential impact of

unmanned vessels on
maritime transportation
safety.

P(X,|X,)P(X
P(X,lX,)= (4ol P(X) 1)
D P(Xl X =x) P(X=x)
The BN qualitative analysis determines the

relationships among the nodes, while the quantitative
analysis might be performed in two ways: a predictive
analysis or a diagnostic analysis. The predictive
analysis calculates the probability of any node based
on parent nodes and conditional dependencies, while
the diagnostic analysis calculates the probability of
any set of variables given some evidence. The nodes
and arcs are the qualitative components of the
networks and provide a set of conditional
independence assumptions that can be represented
through a graph notion called d-separation, where
each arc built from variable X to Y is directly
dependent, that is, a cause-effect relationship [28].

If the variables are discrete, then the probabilistic
relationship of each node X with its respective parents
pa(X) is defined using a conditional probability table
(CPT). For continuous variables, the conditional
probability distribution (CPD), which represents
conditional probability density functions, defines this
probabilistic relationship, and the quantitative
analysis is based on a conditional independence
assumption. Considering three random variables X, Y,
and Z, X is conditionally independent of Y given Z if
P(X,YIZ) = P(XIZ)P(Y1Z) [28]. The joint probability
distribution of a set of variables, based on their
conditional independence, can be factorized as shown
in Equation (1):

P(xl,xz,...,x,,):ﬁP(xl—|Parent(xl—)) )
i=1

The graphical representation is the bridging of the
gap between (high-level) conditional independence
statements encoded in the model and (low-level)
constraints, which enforce the CPD. Given some
evidence, the beliefs are recalculated to indicate their
impact on the network. The possibility of using
evidence from the system to reassess the probabilities
of network events is another important feature of
BNs, which is useful to determine critical points in the
system. Classical methods of inference of a BN for this
purpose involve the computation of the posterior
marginal probability distribution of each component,
the posterior joint probability distribution of subsets
of components, and the posterior joint probability
distribution of the set of all nodes.

3 DISCUSSION

In this subsection three relevant articles, [1], [29], [30],
are selected for further discussion of applicability of
BN for reliability assessment of autonomous ships. In
all three articles focus is on ship machinery system,
Figure 1.
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Figure 1. A schematic arrangement of the machinery plant
(1], [30].

Abaei et al. [1] proposed and verified methodology
to predict failure probabilities in the system that will
lead to breakdown of unattended machinery plant.
The framework consists of four steps:

1. Identifying failure sensitive components (selecting
sensitive components according to severity and
risk index, determining type of human activities,
and observing data for critical and non-critical
failures),

2. Multinominal process tree (constructing branch

trees, defining probability function, and
developing categorical failure function)
3. Hierarchical Bayesian interface (constructing

Bayesian network, setting non-informative prior
function for unknown parameters, deriving
likelihood function, running MCMC for predicting
marginalized posteriori function),

4. Monte Carlo simulations (estimating number of
critical and non-critical failures in consecutive
intervals).

Abaei et al. [29] updated previous framework and
also considered redundancy of autonomous
machinery to gain resilience. This study results show
that with adding redundancy significant advantages
can be achieved regarding costly unplanned
interruptions and repairs. BahooToroody et al. [30]
employed BN to estimate the trusted operational time
of the ship machinery system through four different
autonomy degrees (conventional ship, remotely
controlled ship with crew onboard, remotely
controlled ship, and fully autonomous ship). A two-
parameter Weibull distribution is generated to model
the trusted time. MCMC simulation through Bayesian
inference was adopted to formulate an appropriate
likelihood function for obtaining the joint posterior
distribution of hyper-parameters.

4 CONCLUSIONS

The modelling power of traditional risk analysis such
as fault tree and event tree analysis are clearly
surpassed by BN. Both fault trees and event trees can
easily be converted to a Bayesian network.

The main advantages of BN, with respect to risk
analysis, are summarized as follows:
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— They can represent uncertain knowledge which is
necessary for novel systems whit no documented
failure history,

— They enable modelling of continuous variables,

— They offer possibility of insertion of evidence for
system reassessment and updating,

— They provide combination of qualitative and
quantitative variables,

— They offer identification of relevant and irrelevant
information.

Taking into account that with higher degree of
autonomy, complexity of marine systems will
increase, employment of BN in risk analysis has
immense potential. BN enable quicker and more
intuitive modelling. BN has been successfully applied
for risk assessment of autonomous ships, providing
useful tool to model uncertainty and overcome data
scarcity.
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