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1 INTRODUCTION 

The process of the ship movement steering can be 
divided into several control subsystems, e.g. the 
ship’s course and/or speed stabilization, damping of 
roll angle, dynamic ship positioning (DSP), guidance 
along trajectory etc. One of them is the control sys-
tem for precise steering of the ship moving with the 
low and very low speed. Such kind of the vessel mo-
tion is also known as a crab movement. This regula-
tion process means the full control of velocities dur-
ing translation of the ship with any drift angle, e.g. 
motion ahead, astern and askew or rotation in place. 
No other help (tugs, anchors etc.) is required for this 
process. 

In the beginning, the precise steering systems 
were installed as extensions of DSP units on research 
ships, drilling vessels, cable and pipe laying ships 
and similar ones. Nowadays these systems are mount-
ed on ferries, passenger ships, shuttle tankers, FSO 
and dredging vessels (Fossen 2002). 

The exemplary manoeuvres under such a steer-
ing are presented in Fig.1. It gives, among others, the 
following advantages: 
− the increasing safety of the vessel, especially 

on constrained water with intensive traffic (har-
bours, navigation channels, closed or inner roads 
etc.), owing to ability to perform e.g. a fast anti-
collision manoeuvre on very small area, 

− the possibility of resignation of tugs cooperation 
for e.g. berthing or mooring manoeuvres, 

 
Figure 1: The exemplary situations when precise manoeuvres 
during berthing are needed and expected. 

 
− the ability to pass along very shallow and tortu-

ous navigation channels, inaccessible for ships 
with conventional drivers e.g. near attractive 
touristic places (islands, gulfs, fiords, etc.). 
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For this purpose the ship has to be equipped with 
at least a few driving devices like: main propellers, 
tunnel thrusters, jet-pump thrusters, or azipods (a 
blade rudder is useless in such operations). They al-
low to steer the ship in the manual manner, but it rare-
ly leads to satisfying results - therefore the multivari-
able controller seems to be a reasonable solution. 

 
Figure 2: The block diagram of the multivariable ship control 

system. 

 
The regulation of  three ship’s velocities: 

surge, sway and yaw often needs the ’usage’ of only 
one velocity at a time (see Fig. 1), therefore the con-
trol system should ensure complete or almost com-
plete decoupling steering of the ship. 

The whole described system (see Fig. 2) consists 
of three elements: 
− the measuring subsystem, 
− the multivariable regulator, 
− the thrust allocation unit. 

As it was pointed out the precise steering of the 
vessel is performed with very slow velocities. The 
standard navigation devices for measuring of mo-
tion parameters have poor accuracy in these work 
conditions. Therefore ship’s velocities have to be 
estimated (reconstructed) from position coordinates 
and a value of the heading. The Kalman filters are 
commonly used for this purpose (Anderson & Moore 
2005). 

The ship as a control object has very disadvanta-
geous features: 
− the characteristics of the ship strongly and in 

the nonlinear manner depend on operating condi-
tions e.g. the ship’s velocity, the direction of the 
motion, ship load, water depth, proximity of other 
ships, wharfs, etc. 

− the allowance for all these factors in the model 
is very difficult and even after it has been done it 
leads to a badly complicated structure useless for 
synthesis, 

− the linearization of the model in many working 
points gives a family of the models and the family 
of regulators. Next it generates another problem 
with the process of proper controllers shockingless 
switching. 
A control system designer has two main ways to 

overcome these problems. One of them is matching 

regulator to the real plant during the control process 
i.e. adaptation of the control system - see for exam-
ple Astrom and Wittenmark books or (Niederlinski, 
Moscinski & Ogonowski 1995). The second way is 
evaluation of the bounds of the plant (ship) changes 
and including them into the regulator synthesis pro-
cess (Skogestad & Postlethwaite 2003), (Zhou 1998). 

The last approach is often named Hinf robust con-
trol and requires a minimization of a process matrix 
norm called Hinf (Doyle, Glover, Khargonekar & 
Francis 1989). 

The matrix norms are very convenient ways for 
formulation of performance criterions, especially in 
multivariable systems. One can use two norms: Hinf 
and H2. Controllers related to each norm are com-
monly named ’Hinf regulator’ and ’H2 regulator’. 
The synthesis of both controllers for a ship is the ob-
jective of this paper. 

2 THE HINF AND H2 REGULATORS 

2.1 Problem formulation 
The feedback controller design can be formulated for 
the general configuration of the MIMO system shown 
in Fig.3 (note opposite directions of signals - from 
right to left hand side, more convenient for matrix op-
erations used in multivariable systems). 

 

 
Figure 3: The block diagram of the closed-loop system with 
weighting functions for selected signals. The meaning of the 
particular signals is as follows: ˜r = references vector, ˜p - vec-
tor of disturbances, n˜ - noises vector, ˜ey - weighted control 
errors, ˜eu - weighted control signals. 

 
The concept of weighting functions is a conven-

ient way of introducing different signal specifications 
into a MIMO process: 
− the signals scaling operation is easy to perform by 

means of this functions, 
− one can distinguish between more and less im-

portant components of the signals vectors (e.g. in 
errors vector) by proper gain coefficients, intro-
duced into these functions, 

− the designer requirements related to the particular 
signals can be formulated for specified frequency 
ranges in a natural way. 
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Note the different sense of functions Wu, Ws  on 
the one hand and Wp, Wn, Wz on the other one. Func-
tions matrices Ws and Wu define designer require-
ments for steering quality in the system while func-
tions matrices Wp, Wn and Wz form input signals in 
frequency domain. One can write the following 
equations based on the Fig.3: 

GuWpWWrWWe spszSy −−= ~~  (1) 

uWe uu =  (2) 

GuWnWpWrWv snpz −−−= ~~~  (3) 

Kvu =  (4) 
Above equations can be rewritten in more com-

pact form: 
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where matrix P has the form: 
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Matrix P is called the augmented plant (model 
plant) due to weighting functions vectors included in 
it. Introducing the input vector [ ]Tnprd ~~~=  and 
the weighting error vector [ ]Tuy eee =  one can 
write: 
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vKu ×=  (8) 
The last equations enable to build the generalized 

configuration exposed in Fig.4. 
 

 
Figure 4: The generalized closed-loop system configuration. 

 
Now the weighting error vector can be expressed 

in the form: 

( ) dKP,Te ed ×=  (9) 

where matrix Ted can be obtained by means of the 
Lower Linear Fractional Transformation (Redhef-
fer 1960). 

The control system design can be treated as a 
process of calculating a controller K such which 
maintain small certain weighted signals (e.g. con-
trol errors). One of the possible way to define the 
’smallness’ of signals (or transfer matrices) are ma-
trix norms Hinf and H2 (Skogestad & Postlethwaite 
2003) expressed by the following equations: 
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2.2 The H2 regulator 
The H2 optimal control problem is to find a control-
ler K which stabilizes the closed-loop system (pre-
sented in Fig. 4) and minimizes the H2 norm of this 
system. The minimization of the H2 norm is per-
formable only for strictly proper systems. When the 
plant P is written in state model form: 
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the part D11 and D22 must be a matrices of zeros for 
such a system. 

The well-known LQG controller can be treated as 
a special case of the H2 regulator, when a weighting 
factor in LQG performance criterion is included into 
weighting function Wu (Zhou 1998). 

The regulator which minimizes the H2 norm of 
the system ensures the proper steering quality repre-
sented by the matrix weighting functions Ws and/or 
Wu (see Fig.3), but under assumption that the plant 
model is adequate and accurate. 

2.3 The Hinf regulator 
The goal of Hinf regulator is similar to that of the H2 
one, but now one wants to minimize the Hinf  norm 
with the condition: 

( ) ℜ∈><
∞

γγγ            ,0       ,KP,Ted  

The value γ  has the sense of the energy ratio be-
tween error vector e and exogenous input vector d. 
When the γ  tends to its minimal value the above 
formulation is often named the optimal H∞ control 
problem (Skogestad & Postlethwaite 2003). 

The regulator which minimizes the Hinf norm of 
the system ensures similar quality of the steering for 
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any combinations of exogenous input signals 
formed by matrix weighting functions Wp, Wn and 
Wz (note that this is not warranted by H2 regulator). 

2.4 The robust regulator 
However this steering quality is only achieved under 
the same assumption that the plant model is accu-
rate. If the real plant differs (e.g. due to operating 
conditions) from the model used during controller 
synthesis this quality can be significantly poor. The 
differences between the object and the model are 
usually named the system uncertainties (Doyle 
1982). 

There are several sources of uncertainties which 
can be introduced into the ship model: 
− changes the physical parameters of the vessel due 

to different work conditions (e.g. load, trim, depth 
of water, etc.), 

− errors in estimation process for model coeffi-
cients values, 

− neglected nonlinearities inside the object (e.g. re-
lated to hydrodynamics phenomena), 

− measurement and filtration process errors (e.g. 
biases), 

− unmodelled dynamics, especially in the high fre-
quency range, 
accepted (chosen) limitation of the model order. 

All uncertainties can be divided into two classes: 
parametric ones, related to the particular model coef-
ficients and others - nonparametric ones. Introduc-
tion of the concept of uncertainties into the model-
ling process means that one considers not only the 
one nominal model of the object Gn(jω), but a fami-
ly of models GD spread around this nominal model. 

The uncertainties can be introduced into the sys-
tem model in different ways, depending on their 
types and locations, but all of them are represented 
by means of two components: 

− the first one is the ”pure” uncertainty Δ, bounded 
in the Hinf norm sense i.e. 1≤∆

∞
 

− the second one it is the weighting function model-
ing the magnitude and shape of the uncertainty in 
the frequency domain. 
Consequently, any closed-loop system with un-

certainties contains three basic components: the gen-
eralized (augmented) plant P, the controller K that 
has to be obtained and the set of ”pure” uncertainties 
Δ, collected in the matrix form (see Fig.5). 

 

 
Figure 5: The generalized closed-loop system configuration 
with uncertainties. 

 
The augmented plant P consists of the nominal 

object model Gn and of all matrices of weighting 
functions (modeling the performance requirements, 
forming input signals and describing the uncertain- 
ties). Note that the augmented plant P for Hinf con-
troller synthesis slightly different from this plant for 
H2 one. 

2.5 The ship subsystems as a control object 
The control object denoted Gn (see Fig.3) in the 
considered system consists of four elements: the al-
location unit, thrusters set, the ship and the filters 
system (Gierusz 2006). It has three inputs: two de-
manded forces xτ  and yτ for longitudinal and lateral 

directions of movement and one moment pτ  for 
turning (in the ship-fixed frame) and three outputs: 
estimated values of velocities surge û , sway v̂  and 
yaw r̂ (see Fig.6). 

 

 
Figure 6: The block diagram of control object. 

3 CASE STUDY 

3.1 The training ship 
The H2 and Hinf robust controllers was applied to 
steer a floating training ship. The vessel named 
’Blue Lady’ is used by the Foundation for Safety of 
Navigation and Environment Protection at the Silm 
lake near Ilawa in Poland for training of navigators. 
It is one of the series of 7 various training ships ex-
ploited on the lake. 

The ship ’Blue Lady’ is an isomorphous model of 
a VLCC tanker, built of the epoxide resin laminate 
in 1:24 scale. It is equipped with battery-fed electric 
drives and the two persons control steering post at 
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the stern T˙ he silhouette of the ship is presented in 
Fig.7. 

The main parameters of the ship are as follows: 
Length over all LOA = 13,78[m] 
Beam B = 2,38[m] 
Draft (average) - load condition Tl = 0,86[m] 
Displacement  - load condition Δl = 22,83[t] 
Speed V = 3,10[kn] 

 
The high-fidelity, fully coupled, nonlinear simu-

lation model of this ship was built for controllers 
synthesis. Special attention was paid to the proper 
modeling of the ship’s behaviour during movement 
with any drift angle (e.g. astern or askew). The block 
diagram of the model is presented in Fig. 8 (see 
(Gierusz 2001) for detailed description of this mod-
el).

  
Figure 7: The outline of the training ship ”Blue Lady” 

 

 
Figure 8: The block diagram of the ’Blue Lady’ simulation model. Input signals for the model are as follows (from top to bottom): 
mean wind velocity - Vw , mean wind direction - γw , revolutions of the main propeller - ngc, blade rudder angle - δc, relative 
thrust of the bow (stern) tunnel thruster - sstdc (sstrc), relative thrust of the bow pump thruster - ssodc, turn angle of the bow pump 
thruster - αdc, relative thrust of the stern pump thruster - ssorc, turn angle of the stern pump thruster - αrc. The output signals of the 
model are: surge - u, sway - v, yaw - r, position coordinates - x,y and the heading - Ψ. 
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3.2 The linear model identification 
The synthesis processes of both controllers de-
scribed in this paper need a linear model of the ob-
ject. There are two ways to create it: a linearization 
of a nonlinear (e.g. simulation) model of the vessel 
dynamics or identification way. The second ap-
proach was used in presented work. 

Every identification experiment was performed as 
a simulation run in Simulink environment. More 
than one hundred of experiments were performed for 
this purpose (Gierusz 2006). 

During identification process, it turned out, that 
three subsystems demonstrated weak correlation be-
tween output and input signals 

uu pyx →→→ ττυτ ,, , therefore these subsystems 
were canceled from the whole model (see Fig. 9). 

 

 
Figure 9: Control object paths to be identified. 

 
Finally, the third order state model was obtained. 

The average values of coefficients, obtained in all 
identification experiments were chosen as the values 
of parameters of the nominal model Gn. Note values 
of coefficients equal 0 in the channels cancelled dur-
ing identification process (see Fig. 9). 
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The resultant model is state controllable and ob-
servable - see (Gierusz & Tomera 2006) for details. 
This model was used for H2 controller synthesis. 

For synthesis of the robust regulator five paramet-
ric uncertainties (denoted δi, i = 1, ..., 5) were intro-
duced into the state model due to the wide range of 
variations of parameter values acquired in various 
experiments. This model had the form: 
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The coefficients values of the state model of 
the ship dynamics with values of uncertainties are 
collected in the table 1 below. 

 
Table 1: The values of model coefficients. 
___________________________________________________ 
Wsp.  Nominal Real      Relative 
   value   uncertainty value uncertainty value [%] ___________________________________________________ 
auu   -3.36*10-3  2.64*10-3     78 
avv   -9.00*10-3  5.00*10-3     64 
avr   -2.00*10-4   
aru   -3.00*10-3   
arv   -1.00*10-3   
arr   -7.75*10-3  4.05*10-3     52 
buu  +3.62*10-3  1.51*10-3     42 
bvv  +2.06*10-3   
bvr   +1.61*10-5  2.89*10-5     179 
bru   +3.00*10-5   
brv   +1.15*10-5   
brr   +8.00*10-3   ___________________________________________________ 

3.3 The controllers synthesis 

3.3.1 H2 regulator 
The state model, presented via equations (13) and 

(14), could be arranged into ’augmented state model 
of the open-loop process’ (Balas, Doyle, Glover, 
Packard & Smith 2001), which was necessary to 
compute the multivariable controller which mini-
mized H2 norm. 

The three tracking velocity errors eu, ev and er 
were chosen as a performance criterion. It was as-
sumed that these expected errors would depend on 
frequency of the reference signals. These require-
ments were transferred into the matrix of the 
weighting functions Ws for each velocity. The ma-
trix of the weighting function Wzad was introduced 
instead, to moderate the reference signals rate and 
consequently to constrain the possibly large ampli-
tude of the steering signals. 

The block diagram of model for this process is 
presented in Fig. 10. 
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Figure 10: The block diagram of the augmented open- loop 
process for H2 controller synthesis. Symbols denote: BL3 nom 
- state model of the control object; Dop - adaptation matrix; 
Wzad - filters for reference signals; Ws - weighting functions 
for control perfor- mance. Numbers in parentheses denote sizes 
of the signal vectors. 

 
The synthesis of the regulator was made by 

means of the algorithm named ’h2syn’ from ’µ 
Analysis and Synthesis Toolbox’(see (Balas et al. 
2001) for more details). 

The computed regulator is of order 15: 

( ) ( ) ( )tvBtxAtx 15x3
r

15x15
r ×+×=  (17a) 

( ) ( )tvtx x3
r

x15
r ×+×= 33 DCcτ  (17b) 

The value of the closed-loop system H2 norm was 
12.14 and the value of the H∞ norm was between 
23.9365 and 23.9604. This last value means that the 
H2 controller is not a robust one for the described 
sys- tem. 

3.3.2 Hinf regulator 
Apart from uncertainties related to changing 

proper- ties of the plant, (see equations (15) and 
(16)) two multiplicative, nonparametric uncertainties 
were introduced to the presented ship control sys-
tem. The first one modelled inaccuracy in input sig-
nals (related to transmission errors) with the matrix 
of weighting function Wwyk, and the second one 
modelled measuring and filtering errors in the output 
plant with the matrix of weighting function Wpom. 
The state model of the control object with all 
weighting functions was rebuilt into ’augmented 
state model of the open-loop process’ much more 
complicated then one presented in Fig.10: 

 
 

 
Figure 11: The block diagram of the augmented open- loop 
process. Symbols denote: Δ1  - structured uncertainties block; 
Δ2 - input uncertainty with weighting functions Wwyk; Δ3 - 
measuring and filtering uncertainty with weighting functions 
Wpom; BL3_nom- state model of the control object; Dop - 
adaptation matrix; Wzad - filters for reference signals; Ws - 
weighting functions for robust performance. Numbers in paren-
theses denote sizes of the signal vectors. 

 
The algorithm named ’D-K iteration’ from men-

tioned Matlab toolbox was used to compute the ro-
bust Hinf controller for the system presented in 
Fig. 11. The obtained regulator in state model form 
was of high order equal to 41 - the same as the open-
loop system (with the scaling matrices D - see (Balas 
et al. 2001) for the meaning of such matrices). 

The value of Hinf norm was 0.56 < 1 which en-
sures the robust property of the controller. 

Therefore the order reduction procedures were 
performed. Finally the controller of the order 21 was 
obtained. 

The regulator order seems to be quite high, but it 
is worth to remember what the introduction of para-
metric uncertainties to the plant model is. It means 
that the  obtained  controller  should  steer  properly 
(in weighing functions sense) the object which can 
change its characteristic in a very wide range. There-
fore, the controller for such object should not be so 
simple. 

4 RESULTS ANALYSIS AND FINAL 
REMARKS 

The examination of both control systems was per-
formed during simulation runs with the ship’s non-
linear simulation model. 

Every Figure is divided into two parts. The left-
hand side presents the results of the steering with the 
H2 controller and the right-hand side presents the 
same trials performed with the robust regulator. 

This example is illustrated by means of 3 Figures: 
− the trajectory, drawn by ship’s silhouettes eve-

ry 60[s], 
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− ship’s velocities (reference signals and real val-
ues), supplemented by wind velocity runs (pre-
sented in Beaufort scale) 

− command signals from the regulators. 
The results were recalculated to start both trajec-

tories from point (0,0) and the initial heading was 
chosen as 0 [deg]. 

One can compare the tracking errors for all veloc-
ities in all presented examples . The following for-
mula was used for this purpose: 

( ) ( )( ) { }∑
=

=−=
T

i
cq ruqiqiq

T
J

1

2 ,,        ,1 υ  (18) 

where 

cq  reference signal for particular velocity, 

q̂  estimated value from Kalman filter, 

T = 1000, 1400, 2800 successively for first, second 

and third example. 
 

 
Figure 12: The trajectory of the ship in the first exam- ple 
drawn by silhouettes every 60[s]. Initial heading ψ0 = 0[deg], 
the trial period t = 1000[s]. An arrow indicate the average wind 
direction. 

 

 
Figure 13: The velocities of the ship in the first example - from 
the top: surge, sway and yaw. The bottom figures present the 
wind speed in Beaufort scale (recalculated in the ship model 
scale 1:24). Solid lines denote real values, dashed lines - com-
mands. 

 
Figure 14: The commands from controllers - from the top: for 
surge - τx, for sway - τy  and for yaw - τp. 

 

 
Figure 15: The trajectory of the ship in the second example 
drawn by silhouettes every 60[s]. Initial heading ψ0 = 0[deg], 
the trial period t = 1400[s]. An arrow indicate the average wind 
direction. 

 

 
Figure 16: The velocities of the ship in the second example - 
from the top: surge, sway and yaw. The bottom figures present 
the wind speed in Beaufort scale (recalculated in the ship mod-
el scale 1:24). Solid lines denote real values, dashed lines - 
commands. 
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Figure 17: The commands from controllers - from the top: for 
surge - τx, for sway - τy  and for yaw - τp. 

 

 
Figure 18: The trajectory of the ship in the third example 
drawn by silhouettes every 60[s]. Initial heading ψ0 = 0[deg], 
the trial period t = 2800[s]. An arrow indicate the average wind 
direction. 

 

 
Figure 19: The velocities of the ship in the third example - 
from the top: surge, sway and yaw. The bottom figures present 
the wind speed in Beaufort scale (recalculated in the ship mod-
el scale 1:24). Solid lines denote real values, dashed lines - 
commands. 

 

 
Figure 20: The commands from controllers - from the top: for 
surge - τx, for sway - τy  and for yaw - τp. 

 
The comparisons are presented in the tables (val-

ues x 106): 
 
Example 1 
 Controller  Ju   Jv   Jr 
  H2    35  127  191 
  Hinf    1   73  29 

 
Example 2 
 Controller  Ju   Jv   Jr 
  H2    369  3   660 
  Hinf    37  1   230 

 
Example 3 
 Controller  Ju   Jv   Jr 
  H2    2650 205  3280 
  Hinf    920  109  2270 

 
The similar calculations one can perform for con-

trol effort for both regulators using the formula: 

( )( ) { }∑
=

==
T

i
ss pyxsi

T
J

1

2 ,,        ,1 ττ  

where 

sτ control signal from regulator in the particular 
channel, 

T = 1000, 1400, 2800 successively for first, second 
and third example. 

The results are presented in the tables: 
 

Example 1 
 Controller  xJτ    yJτ    pJτ  
  H2    30   805   34 
  Hinf    1    728   1 
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Example 2 
 Controller  xJτ    yJτ    pJτ  
  H2    393   7    225 
  Hinf    180   5    132 

 
Example 3 
 Controller  xJτ    yJτ    pJτ  
  H2    7720  723   1104 
  Hinf    5120  444   633 

5 REMARKS 

− The fully coupled, simulation model of the ship 
with acceptable accuracy gives possibilities to 
perform the identification trials instead of costs 
and time consuming full-scale experiments. One 
can the build the multidimensional linear model 
and estimate the system uncertainties: their rang-
es and sources, based on the results from simula-
tion runs. 

− The introduction of parametric uncertainties into 
the plant model enables to cover the changes of 
object characteristics (even nonlinear) in the all 
range of assumed work conditions. On the other 
hand it causes the increasing difficulty in the con-
troller synthesis. 

− Very important advantage (or attribute) of both 
regulators is its fixed structure and constant val-
ues of coefficients. It means that navigators do 
not need to adjust any coefficients of these con-
trollers. 

− The H2 controller works worse than the robust 
one. One can compare tables with results for con-
trol quality and steering effort. One of the main 
reasons for such a steering can be the lack of the 
robust properties of the regulator (see the Hinf 
norm of this regulator). 

− Both systems were tested in the presence of a 
medium level of wind, in spite of fact that exter-
nal disturbances were not taken into account dur-
ing controllers synthesis processes. The robust 
regulator still seems to be a better one in such 
work conditions. The external disturbances one 
can try to introduce into the controller synthesis 
process but often no enough adequate regulator is 
obtained (eg. without robust properties). 

− As one can see in Fig. 12 - Fig.19, the steering is 
almost de-coupling despite the full matrices B, C 
and D in the controllers. 

− The both closed-loop systems are stable under all 
tested work conditions. 

− The most important problems are related to yaw 
steering (especially for H2 controller). One of the 
possible sources was the gyrocompass (with its 
accuracy 0.2[deg]) and one was the fact that the 
training ship is high weatherly. 

− In general regulator calculated for one ship can 
not be transferable to another one due to linear 
object model specified for particular ship. It is a 
similar situation like with PID controllers in 
many industrial processes. But the possibility of 
using a simulation model of the ship’s dynamics 
instead a real ship for experiments for H2 or Hinf 
robust controller synthesis seems to be a great 
advantage of described approach. 
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