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ABSTRACT: In this contribution we present a review of the DIA-method to ensure navigational integrity. The
DIA-method rigorously combines parameter estimation and statistical testing for the Detection, Identification
and Adaptation of multivariate and multiple model misspecifications. We describe the statistical properties of
the so-obtained DIA-estimator together with its probability density function. Numerical examples are given to

highlight various aspects of the navigational DIA-estimator.

1 INTRODUCTION

Parameter estimation and statistical testing are crucial
components in any navigational data processing
system. The DIA method for the Detection,
Identification =~ and  Adaptation  of  model
misspecifications combines estimation with testing.
Parameter estimation is conducted to determine
estimates for the parameters of interest and statistical
testing is conducted to validate the results with the
aim of removing any unwanted biases that may be
present. In order to rigorously capture the estimation-
testing combination, the DIA-estimator has been
introduced in [1], together with a wunifying
probabilistic framework. This allows one to take into
account the intricacies of the combination when
evaluating the contributions of the decisions and
estimators involved. As it will be shown, this
inclusion of the estimationttesting combination is
crucial to be able to obtain a rigorous quality and
integrity-risk description of one’s position and
navigational results. Such rigor is needed so as to
avoid too optimisticc and therefore dangerous,
navigational integrity assessments.

2 THE DIA-METHOD

A brief review is given of the Detection-Identification-
Adaptation (DIA) method. Although the method is
applicable for any statistical identification procedure,
we here use for illustration purposes the relatively
simple datasnooping procedure for single-outlier
identification [1].

2.1 Statistical Hypotheses

We first formulate the null- and alternative
hypotheses, denoted by Ho and Hi, respectively. As
alternative hypotheses, we consider those describing
outliers in individual observations. Here we restrict
ourselves to the case of one outlier at a time. In that
case there are as many alternative hypotheses as there
are observations. Therefore, the observational model
under Ho and Hiis given as

Hy: E()=4x, D(»=0, @)

H,: E(y):Aercibi’. D(y):Qw @)
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with E() the expectation operator, D(-) the
dispersion operator, y€R"™ the normally distributed
random vector of observables linked to the estimable
unknown parameters through the design matrix

AeR™ of rank(4)=n , and Q eR"™ the
positive-definite ~variance matrix of y The
redundancy of H is r=m-rank(d)=m-n. ¢, is the

canonical unit vector having one as its i entry and
zeros elsewhere, and bi is the scalar bias. Note that
[4 c¢] is a known matrix of full rank. As the number
of observations is equal to m, there are also m
alternative hypotheses H, defined in (2); i=1/,...,m.

The best linear unbiased estimator (BLUE) of the
unknown parameters x is given by

H: £=A4"y H, @ &=Ay 3)

i#0 i
with 4" =(A'Q' 4)' 4°Q!
A =(Zl_TQ;,Z[)'IZIT O, the BLUE-inverse of A =P 4

and P*

the BLUE-inverse of A,

— T -1 -1 T -1 :
=1,-c(c;0,¢) ¢ O being an orthogonal
projector that projects onto the

complement of the range space of ci.

orthogonal

2.2 DIA-datasnooping procedure

The DIA-method has been widely employed in a
variety of applications, such as the quality control of
positioning and navigation, and the integrity
monitoring of GNSS models, see e.g. [2, 3]. The DIA
steps are realized using the misclosure vector teR’
given as
t=B"y;  0Q,=B'O B (4)
where the mxr matrix B is a full-rank matrix, with
rank(B) =7, of which the range space is an orthogonal
complement of that of A, ies [4 B]eR™™ is
invertible and A"B=0. With y~N(dx+ch, 0, ) for

i=0,1,...,m and cb, =0, the misclosure vector is then
distributed as

HI

~N(u, =B'ch,Q )  for i=0l..m ®)

As t is zero-mean under H and also independent
of %, ,itprovides all the available information useful
for validation of H, [1]. Thus, an unambiguous
testing procedure can be established through
assigning the outcomes of ¢ to the statistical

hypotheses H, for i=0,1,...m.

The DIA-datasnooping procedure is specified as
follows:

1. Detection: Accept H if teB with

={teR"‘ HtH2QﬂSka,r} (6)

in which |- H =()'Q'() and k, is the a-
percentage of the cenfral Chi- square distribution
with r degrees of freedom. If H is accepted, then
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%, is provided as the estimate of x. Otherwise, go
to step 2.
2. Identification: Compute Baarda's test statistic for all

alternative hypotheses as [4, 5]

CTQ‘lt
W= =it (7)

i [ 11
Ctl Qn Cr,

in which ¢, = BT c, is the i column of matrix B
since ci is a canonical unit vector. Select H_, if
tep , with

P, = {teR' /B max |w, |} 8)

e{l,...m}

3. Adaptation: When H, is selected,
provided as the estimate of x.

then X s

The partitioning P: in terms of the (original)
misclosure vector is introduced in [1], and an example
is shown in Figure 3 in [ibid].

3 THE DIA-ESTIMATOR

Given the above three steps, estimation and testing
are combined in DIA-datasnooping. A unifying
framework is presented in [1] to rigorously capture
the probabilistic properties of this combination.

Testing :

Estimation 20 £ &

-~

DIA estimator:

F= ¥ & pi(r)
i=0

Figure 1. Estimation and testing combined leads to the DIA-
estimator [6].

As such, the DIA-estimator X was introduced,
which captures the whole estimation-testing scheme
and it is given as (see Figure 1)

¥=> 5 5,0 ©)

with pj(t) being the indicator function of region P, ,
ie. p()=1 for tep, and p;(H=0 elsewhere.
Therefore, the DIA-estimator X is a combination of

x for j=01,..,m and the misclosure vector t. The
Probablhty Density Function (PDF) of ¥ under H,
reads [1]
£O1E)=X[ ., Ocl8)dr

" (10)

N Zj‘pvf;’a (9+LjT|H,-)j[,(T |Hl.)d‘[

where the second equality is a consequence of



(11)

—AJFCJ.CZQ; (12)

i 2
e, I,

It is important to realize, although we are working
with linear models (cf. 1 and 2) and linear estimators
X, based normally distributed data, that the DIA-
estimator X, which captures the final outcome of our
combined estimation+testing process, is now not
normally distributed anymore. Its distribution is
given by (10) and it is this expression that one needs
to use when evaluating the quality or integrity risks of
one’s positioning or navigational results.

4 THE DIA-ESTIMATOR IN CASE OF A SINGLE
ALTERNATIVE HYPOTHESIS

To illustrate the characteristics of the DIA-estimator,
we take the single alternative hypothesis case as a
simple example. Suppose that in (1), there is only one
unknown parameter (n=1) and also the redundancy
of the model is one (r=1), ie. xR and ¢teR. The
canonical form of such a model, applying the
Tienstra-transformation T to the normally
distributed vector of observables y [1], reads

.. g ~ )ACO H,N x+b);m G;O 0 13
Sy y“ b e o))

which is specified for i€ {0,a} as
b,
' (14)

for some b, eR/{0} , and also L,e€R which
establishes the following link

X, =x,—L,t

a a

(15)

sothat E(x,|H))=E(X,|H)=x.

The corresponding DIA-datasnooping procedure is
then defined as:
1. Detection: Accept H if teB with

B =[yk, o k]

Provide fco as the estimate of x.
2. Identification: Select H_if teP with Bf=R /B .
3. Adaptation: When H_ is selected, X is provided
as the estimate of x.

With the above three steps, the DIA-estimator and
its PDF under H,, i€{0,a}, are given by

(16)

X =%, p(O)+x, (1= p, (1)) 17)

and

SeO1H,) =1, (OH,)+

+.[p5|:f’20(0+LaT|Hi)_ﬁ;0(0|Hi):| ft(T|H,) dr (18)

As there is only one alternative hypothesis H ,
there are four events to consider: Correct Acceptance
(CA), False Alarm (FA), Missed Detection (MD) and
Correct Detection (CD). Using their probability of
occurrences, the PDF of the DIA-estimator f.(0|H,)
can be decomposed as

ACAN:Y :-f)?[) (O1Hy) Py + -fi'ﬂ\FA(g | FA) Py,
fO018,)=f, OH,) Py + [ (@ ]CD) P,

In Figure 2, considering o) =0.5m’, o =2m’
and L, =0.5, we show how the PDFs f.(0|H,) [top]
and f.(0|H,) [middle and bottom] are formed
according to (19). The solid and dashed blue curves,

respectively, depict f; (0]H,) = f;c,(0|CA) and
S ea (01 FA) in the top panel, and
fo(0H,)= fup@IMD) and /. ,(6]CD) in the
middle and bottom panels. The black curve shows

/; (01H,) whichisalsoequalto f; (¢]H,).

These results clearly show how the PDF of the
DIA-estimator differs from the PDFs of X, and X, .

5 DIA CONFIDENCE REGION IN CASE OF
MULTIPLE ALTERNATIVE HYPOTHSES

So far, we have been working with an observational
model with one unknown parameter and one
redundancy. In this section, we work with the
satellite-based single point positioning (SPP) model
based on the observations of m satellites with four
unknown  parameters (n=4) and r=m-4
redundancy. As alternative hypotheses, we consider
those given in (2). In that case there are as many
alternative hypotheses as there are observations.

Assuming there are m pseudorange observations,
the observational model under H, for i=0,1,....m is
given as

H : E(y)=[G em]{;}+cibi . 0,=01, (20)
where the mx3 matrix G=[-u,..,-u/]" contains

the receiver-satellite unit direction vectors ui as its
rows, and en is the m — vector of ones, and again with
cyby =0 The unknown receiver coordinate
components and clock error are, respectively, denoted
by the 3-vector x and scalar dt. The dispersion of the
observables is characterized through the standard
deviation o, and the identity matrix [, . At this
stage, in order to simplify our analysis, we do not
consider a satellite elevation-dependent variance
matrix.
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Figure 2. Illustration of the DIA-estimator PDF [top] under
null hypothesis H, and [middle and bottom] under
alternative hypothesis H, . The contributing parameters are
set as o7 =0.5m’, o/ =2m’, L,=0.5. Panels, from left to
right, correspond to P,, =107 and P,, =10"'. Panels in
the middle and at the bottom correspond to resp. P, =0.4
and P., =0.99.

For integrity purposes, it is common to describe
the quality of an estimator of x by computing its
corresponding confidence region or confidence level
[7]. To construct the confidence region for the
parameters of interest, one may define beforehand the
shape of the region, for example, spherical, ellipsoidal,
or rectangular, and then compute its size for a given
confidence level [8, 9], or have the confidence region
determined by the contours of the PDF of the
estimator for a given confidence level [10, 11].
Whichever approach is taken, the properties of the
confidence region are determined by the probabilistic
properties of the estimator. It is therefore crucial, in
order to have a realistic confidence region, that one
works with the correct PDF of one’s estimator. This
implies, when exercising a DIA procedure, one should
use the PDF of the DIA estimator X rather than the
PDF of its constituent estimators . To emphasize
this, we compare three different confidence regions
under null-hypothesis as follows:

1. An ellipsoidal 100(1-a)% confidence region E(x)
based on the normal distribution of %, under H,.
This is the region that one normally uses in
practice for constructing a confidence region. Note
however, that this region neglects the probabilistic
impact of testing.

2. An ellipsoidal 100(1-a)% confidence region E’(x),
that has the same shape as E(x), but with a size
determined by the nonnormal PDF of the DIA-
estimator under the null-hypothesis.

3. A 100(1-a)% confidence region C(x) of which the
shape and size are determined as the highest density
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region [10, 11] of the nonnormal PDF of the DIA-
estimator under the null-hypothesis.

Figure 3 shows the above three confidence regions
for the SPP model (20) corresponding with the Figure
4 skyplot. The larger size of the red ellipse comparing
to the blue one demonstrates that the confidence
region E(x) has a poor coverage in the sense that it
provides a too optimistic picture and that it should thus
be made larger in order to contain the required
probability of the DIA estimator. It will be clear that a
too optimistic assessment is dangerous in case of
safety-of-life applications. The green region C(x) in
Fig. 4 is significantly different in shape from the
ellipsoidal confidence region which is conventionally
used. Depending on the a value, C(x) can be a
nonconvex region, which is caused by the shape of the
nonnormal PDF of the DIA-estimattor under the null-
hypothesis. This shows again the influence testing has
on confidence-statements and that one therefore
should use the PDF of the DIA-estimator to evaluate
the quality of estimated position and navigation
results.

a=0.1 a = 0.05
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Figure 3. Illustration of 100(1-a)% confidence regions for the
SPP model (20) corresponding with the skyplot of Fig 4. The
results show different values of a, with ¢,=0.5m and Pra=0.1.
In each panel, green area indicates the region C(x), red
ellipse indicates boundary of E’(x) and blue ellipse indicates
the boundary of E(x) [6].

Figure 4: Skyplot of six satellites.



6 SUMMARY AND CONCLUSION

The message of this contribution finds its origin in the
combination of parameter estimation and statistical
testing. These two activities are typically disconnected
in practice, when it comes to describing the quality of
the eventual estimator. That is, the distribution of the
estimator under an identified alternative hypothesis is
usually used, without regard to the conditioning
process that led to the decision to accept this
hypothesis as the working model. We analysed what
the contribution of this negligence is to the actual
integrity risk and showed that for a rigorous
assessment one should use the DIA-estimator and its
probability density function.
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