
 

International Journal  
on Marine Navigation  
and Safety of Sea Transportation 

Volume 3 
Number 2 
June 2009 

 

163 

1 MATHEMATICAL MODELS OF SAFE SHIP 
CONTROL PROCESS 

1.1 Base model  
As the process of steering the ship in collision situa-
tions, when a greater number of objects is encoun-
tered, often occurs under the conditions of indefi-
niteness and conflict, accompanied by an inaccurate 
co-operation of the objects within the context of 
COLREG Regulations then the most adequate model 
of the process which has been adopted is a model of 
a dynamic game, in general of j tracked ships as ob-
jects of steering (Cahill 2002, Lisowski 2004b, 
2005d, 2007b, Sandom 2004). 
The diversity of selection of possible models directly 
affects the synthesis of the ship’s  handling algo-
rithms which are afterwards effected by the ship’s 
handling device directly linked to the ARPA system 
and determines the effects of the safe and optimal 
control. The properties of the process are described 
by the state equation (Isaacs 1965): 
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The constraints of the control and the state of the 
process are connected with the basic condition for 
the safe passing of the ships at a safe distance Ds in 
compliance with COLREG Rules, generally in the 
following form (Engwerda 2005): 
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Goal function has form of the payments – the in-
tegral payment and the final one: 
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The integral payment represents loss of way by 
the own ship while passing the encountered ships 
and the final payment determines the final risk of 
collision rj(tk) relative to the j-th ship and the final 
deflection of the own ship d(tk) from the reference 
trajectory (Lisowski 2000a, 2002, 2005a,c, 2008b, 
Nisan 2007, Nowak 2005, Osborna 2004). 

1.2 Approximate models 
Having regard to a high complexity of the base 
model in the form of a model of a dynamic game for 
the practical synthesis of safe steering algorithms 
various simplified models are formulated, such as 
for example:  
− multi-stage positional game 
− non-cooperative game 
− cooperative game 

− multi-step matrix game 
− dynamic model with neural constraints 
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− kinematic model 
− classical model 
− fuzzy model 

− static model 
− speed triangle model.  
The degree of simplification is dependent on a con-
trol method applied (Lavalle 2006, Lisowski 2005b, 
2006b, 2007a,c, 2008d, Straffin 2001). 

2 ALGORITHMS OF SAFE SHIP CONTROL 

Each particular approximated model of process may 
be assigned respective methods of safe control of 
ship (Table 1). 

 
Table 1. Algorithms of determining ship strategies. ___________________________________________________ 
Process   Control     Computer   Type  
models   methods    supporting  of decision 
           algorithms ___________________________________________________ 
Multi-stage Dual linear    NPG   Positional 
positional  programming   CPG   game trajectory 
game  
 
Mult-step  Dual linear    MG   Risk game 
matrix   programming       trajectory 
game  
 
Dynamic  Dynamic    DO   Dynamic 
     programming,      optimal 
     Artificial        trajectory 
     neural network 
 
Kinematic  Linear      KO   Kinematic 
     programming       optimal 
     Fuzzy          trajectory 
     Control 
 
Static   Linear     OM   Optimal 
     programming       manoeuvre 
     Fuzzy  
     control ___________________________________________________ 
 

In practice, methods of selecting a manoeuvre as-
sume a form of appropriate steering algorithms sup-
porting navigator decision in a collision situation. 
Algorithms are programmed into the memory of a 
Programmable Logic Controller PLC.  

This generates an option within the ARPA anti-
collision system or a training simulator (Fig. 1). 

 

 
Figure 1. The system structure of computer support of naviga-
tor decision in collision situation.  

2.1 Algorithm of non-cooperative positional game 
NPG 

The optimal steering of the own ship )t(u0
∗ , equiva-

lent for the current position p(t) to the optimal posi-
tional steering )p(u0

∗ , is determined: 

− for the measured position p(tk) of the steering sta-
tus at the moment tk sets of the acceptable strate-
gies ( )[ ]k

0
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tered objects in relation to the own ship, and the 
output sets ( )[ ]k
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countered objects, 
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where S0 refers to the continuous function of the 
manoeuvring goal of the own ship, characterising 
the distance of the ship at the initial moment t0 to the 
nearest turning point Lk on the reference pr(tk) route 
of the voyage.  

The optimal steering of the own ship is calculated 
at each discrete stage of the ship’s movement by ap-
plying the SIMPLEX method to solve the problem 
of the linear programming, assuming the relationship 
(4) as the goal function and the control constraints 
(2).  

Using the function of lp – linear programming 
from the Optimisation Toolbox Matlab, the position-
al multi-stage game non-cooperative manoeuvring 
NPG program has been designed for the determina-
tion of the own ship safe trajectory in a collision sit-
uation (Lebkowski 2001, Lisowski 2001a, 2008b, 
Segal 1998). 

2.2 Algorithm of cooperative positional game CPG 
Goal function (4) for cooperative game has the form: 
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2.3 Algorithm of matrix game MG 
The dynamic game is reduced to a multi-step matrix 
game of a j number of participants (Lisowski 2001b, 
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2004a, 2006a, Radzik 2000). The matrix game R
)],(r[ 0jj νν=  includes the values determined previ-

ously on the basis of data taken from an anti-
collision system ARPA the value a collision risk rj 
with regard to the determined strategies ν0 of the 
own ship and those νj of the j-th encountered objects. 
The matrix risk contains the same number of col-
umns as the number of participant I (own ship) strat-
egies and the number of lines which correspond to a 
joint number of participant II (j objects) strategies 
(Fig. 2). 

 
Figure 2. Navigational situation representing the passing of the 
own ship with the j-th object. 

 

The value of the risk of the collision rj is defined 
as the reference of the current situation of the ap-
proach described by the parameters j

minD  and j
minT , 

to the assumed assessment of the situation defined as 
safe and determined by the safe distance of approach 
Ds and the safe time Ts – which are necessary to exe-
cute a manoeuvre avoiding a collision with consid-
eration actual distance Dj between own ship and en-
countered j-th ship: 
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where the weight coefficients (w1, w2) are depended 
on the state visibility at sea, dynamic length and dy-
namic beam of the ship, kind of water region.  

The constraints affecting the choice of strategies 
(ν0, νj) are a result of COLREG recommendations.  

Player I may use ν0 of various pure strategies in a 
matrix game and player II has νj of various pure 
strategies.  

As the game, most frequently, does not have sad-
dle point the state of balance is not guaranteed – 
there is a lack of pure strategies for both players in 
the game. The problem of determining an optimal 
strategy may be reduced to the task of solving dual 
linear programming problem. Mixed strategy com-
ponents express the distribution of probability 

),(p 0jj νν  of using pure strategies by the players. 
As a result of using the following form for the steer-
ing criterion: 

( ) j
j
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the probability matrix P=[pj (νj, ν0)] of using particu-
lar pure strategies may be obtained.  

The solution for the steering goal is the strategy 
of the highest probability: 

( ) { }max0jjo0 )],(p[uu 00 νννν =
∗

 (9) 

Using the function of lp – linear programming 
from the Optimisation Toolbox Matlab, the matrix 
multi-step game manoeuvring MG program has been 
designed for the determination of the own ship safe 
trajectory in a collision situation (Cichuta 2000). 

2.4 Algorithm of dynamic optimisation DO 
The description of the own ship dynamic allows for 
the following representation of the state equations in 
a discrete form: 

7,...,2,1i)u,u,x(xxx 21ik,ik,i1k,i =+=+ ∆  (10) 

where x1=X0, x2=Y0, x3 =ψ , x4 = maxψ , x5=V, x6=V , 
x7=t, u1= maxr /αα , u2=nr / nmax 

The basic criterion for the ship's control is to en-
sure safe passing of the objects, which is considered 
in the state constraints: 

0)t,Y,X(g jjj ≤  (11) 

This dependence is determined by the area ship's 
domain of the collision hazard and which assumes 
the form of a circle, parable, ellipse or hexagon (Ba-
ba 2001, Lisowski 2000b).  

The ships domains may have a permanent or var-
iable shapes generated, for example, by Neural Net-
work Toolbox Matlab. Moreover, a criterion of op-
timisation is taken into consideration in the form of 
smallest possible way loss for safe passing of the ob-
jects, which, at a constant speed of the own ship, 
leads to the time-optimal control: 
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Determination of the optimal control of the ship 
in terms of an adopted control quality index may be 
performed by applying Bellman's principle of opti-
misation. The optimal time for the ship to go 
through k stages is as follows: 
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The optimal time for the ship to go through the k 
stages is a function of the system state at the end of 
the k-1 stage and control )u,u( 2k,22k,1 −− at the k-2 
stage (Levine 1996).  

By going from the first stage to the last one the 
formula (13) determines the Bellman's functional 
equation for the process of the ship's control by the 
alteration of the rudder angle and the rotational 
speed of the screw propeller (Nise 2008).  

The constraints for the state variables and the 
control values generate the NEUROCONSTR proce-
dure in the dynamic optimal control DO program for 
the determination of the own ship safe trajectory in a 
collision situation (Skogestad 2005). 

2.5 Algorithm of kinematics optimisation KO 
Goal function (4) for kinematics optimisation has the 
form: 
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3 COMPUTER SIMULATION 

Computer simulation of NPG, CPG, MG, DO and 
KO algorithms was carried out in Matlab/Simulink 
software on an examples of a real navigational situa-
tions at sea of passing j encountered objects (Pachci-
arek 2007, Lisowski 2008c). 

3.1 Situation for j=4 encountered ships 

 
Figure 3. The 6 minute speed vectors of own and 4 encountered 
ships in situation in Kattegat Strait 

 

 
Figure 4. The safe trajectory of own ship for NPG algorithm in 
good visibility Ds=1 nm in situation of passing j=4 encoun-
tered ships, r(tk)=0, d(tk)=2.99 nm. 

 

 
Figure 5. The safe trajectory of own ship for CPG algorithm in 
good visibility Ds=1 nm in situation of passing j=4 encoun-
tered ships, r(tk)=0, d(tk)=1.10 nm. 
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Figure 6. The safe trajectory of own ship for MG algorithm in 
good visibility Ds=1 nm in situation of passing j=4 encoun-
tered ships, r(tk)=0, d(tk)=0.83 nm. 

 

 
Figure 7. The safe trajectory of own ship for DO algorithm in 
good visibility Ds=1 nm in situation of passing j=4 encoun-
tered ships, h16.1tK =∗ . 

 

 
Figure 8. The safe trajectory of own ship for KO algorithm in 
good visibility Ds=1 nm in situation of passing j=4 encoun-
tered ships, r(tk)=0, d(tk)=0.38 nm. 

 
Figure 9. The comparison of own ship safe trajectories in good 
visibility Ds=1 nm in situation of passing j=4 encountered 
ships. 

3.2 Situation for j=8 encountered ships 

 
Figure 10. The 6 minute speed vectors of own and 8 encoun-
tered ships in situation in Kattegat Strait. 

 

 
Figure 11. The safe trajectory of own ship for NPG algorithm 
in good visibility Ds=1 nm in situation of passing j=8 encoun-
tered ships, r(tk)=0, d(tk)=2.10 nm. 
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Figure 12. The safe trajectory of own ship for CPG algorithm 
in good visibility Ds=1 nm in situation of passing j=8 encoun-
tered ships, r(tk)=0, d(tk)=0.68 nm. 

 

 
Figure 13. The safe trajectory of own ship for MG algorithm in 
good visibility Ds=1 nm in situation of passing j=8 encoun-
tered ships, r(tk)=0, d(tk)=2.74 nm. 

 

 
Figure 14. The safe trajectory of own ship for DO algorithm in 
good visibility Ds=1 nm in situation of passing j=8 encoun-
tered ships, h93.0tK =∗ . 

 
Figure 15. The safe trajectory of own ship for KO algorithm in 
good visibility Ds=1 nm in situation of passing j=8 encoun-
tered ships, r(tk)=0, d(tk)=0.26 nm. 

 

  
Figure 16. The comparison of own ship safe trajectories in 
good visibility Ds=1 nm in situation of passing j=8 encoun-
tered ships. 

3.3 Situation for j=19 encountered ships 

 
Figure 17. The 6 minute speed vectors of own and 19 encoun-
tered ships in situation on the North Sea. 
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Figure 18. The safe trajectory of own ship for NPG algorithm 
in good visibility Ds=1 nm in situation of passing j=19 encoun-
tered ships, r(tk)=0, d(tk)=2.92 nm. 

 
Figure 19. The safe trajectory of own ship for CPG algorithm 
in good visibility Ds=1 nm in situation of passing j=19 encoun-
tered ships, r(tk)=0, d(tk)=1.95 nm. 

 

 
Figure 20. The safe trajectory of own ship for MG algorithm in 
good visibility Ds=1 nm in situation of passing j=19 encoun-
tered ships, r(tk)=0, d(tk)=3.81 nm. 

 

 
Figure 21. The safe trajectory of own ship for DO algorithm in 
good visibility Ds=1 nm in situation of passing j=19 encoun-
tered ships, h10.1tK =∗ . 

 
Figure 22. The safe trajectory of own ship for KO algorithm in 
good visibility Ds=1 nm in situation of passing j=19 encoun-
tered ships, r(tk)=0, d(tk)=0.84 nm. 

 

 
Figure 23. The comparison of own ship safe trajectories in 
good visibility Ds=1 nm in situation of passing j=19 encoun-
tered ships. 
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3.4 Situation for j=47 encountered ships 

 
Figure 24. The 6 minute speed vectors of own and 47 encoun-
tered ships in situation in the English Channel. 

 

 
Figure 25. The safe trajectory of own ship for NPG algorithm 
in good visibility Ds=1 nm in situation of passing j=47 encoun-
tered ships, r(tk)=0, d(tk)=0.11 nm. 

 

 
Figure 26. The safe trajectory of own ship for CPG algorithm 
in good visibility Ds=1 nm in situation of passing j=47 encoun-
tered ships, r(tk)=0, d(tk)=1.17 nm. 

 
Figure 27. The safe trajectory of own ship for MG algorithm in 
good visibility Ds=1 nm in situation of passing j=47 encoun-
tered ships, r(tk)=0, d(tk)=3.83 nm. 

 

 
Figure 28. The safe trajectory of own ship for DO algorithm in 
good visibility Ds=1 nm in situation of passing j=47 encoun-
tered ships, h03.3tK =∗ . 

 

 
Figure 29. The safe trajectory of own ship for KO algorithm in 
good visibility Ds=1 nm in situation of passing j=47 encoun-
tered ships, r(tk)=0, d(tk)=0.11 nm. 
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Figure 30. The comparison of own ship safe trajectories in 
good visibility Ds=1 nm in situation of passing j=47 encoun-
tered ships. 

4 CONCLUSION 

In order to ensure safe navigation the ships are 
obliged to observe legal requirements contained in 
the COLREG Rules. However, these Rules refer ex-
clusively to two ships under good visibility condi-
tions, in case of restricted visibility the Rules pro-
vide only recommendations of general nature and 
they are unable to consider all necessary conditions 
of the real process.  

Therefore the real process of the ships passing 
exercises occurs under the conditions of indefinite-
ness and conflict accompanied by an imprecise co-
operation among the ships in the light of the legal 
regulations. 

A necessity to consider simultaneously the strate-
gies of the encountered ships and the dynamic prop-
erties of the ships as control objects is a good reason 
for the application of the differential game model - 
often called the dynamic game. 

The control methods considered in this paper are, 
in a certain sense, formal models for the thinking 
processes of a navigating officer steering of own 
ships. Therefore they may be applied in the con-
struction of both appropriate training simulators at 
the maritime training centre and also for various op-
tions of the basic module of the ARPA anti-collision 
system. 

The application of approximate models of the dy-
namic game to synthesis of optimal control allows 
the determination of safe trajectory in situations of 
passing a greater number of met objects as sequence 
of course and speed manoeuvres. 

The algorithms NPG and CPG determine game 
and safe trajectory of the ship with relation to of all 

objects and permits to take into account the degree 
of their cooperation.  

The algorithm MG determines game and safe tra-
jectory of the ship with relation to of the object of 
most dangerous.  

The algorithms DO and KO determine the opti-
mal and safe trajectory of the ship most nearing to 
the received trajectory from the training simulator 
ARPA. 

The developed  algorithms takes also into consid-
eration the Rules of the COLREG Rules and the ad-
vance time of the manoeuvre approximating the 
ship's dynamic properties and evaluates the final de-
viation of the real trajectory from the reference val-
ue. 

These algorithms can be used for computer sup-
porting of navigator safe manoeuvring decision in a 
collision situations using information from ARPA 
anti-collision radar system. 

The sensitivity of the final game payment: 
− is least relative to the sampling period of the tra-

jectory and advance time manoeuvre, 
− most is relative to changes of the own and met 

ships speed and course, 
− it grows with the degree of playing character of 

the control process and with the quantity of ad-
missible strategies. 
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