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1 ARTIFICIAL INTELIGENCE IN DECISSION 
MAKING SUPPORT 

1.1 Introduction 
In Artificial Intelligence (AI) one of the main tasks 
is to create intelligent agents that adapt to current 
situation, i.e. change their behavior based on interac-
tions with the environment (Fig 1.), becoming more 
efficient over time, and adapting to new situations as 
they occur.  

Such ability is important for simulating helms-
man behavior in ship maneuvering on restricted wa-
ters. 

 

 
Figure 1. General model of agent-based systems. 

 
Learning process for simpler layouts can be per-

formed using classic approach, i.e. Temporal Differ-
ence Reinforcement Learning (Tesauro 1995) or Ar-

tificial Neural Networks with fixed structures (Braun 
& Weisbrod 1993). Dealing with high-dimensional 
spaces is a known challenge in Reinforcement 
Learning approach which predicts the long-term re-
ward for taking actions in different states (Sutton & 
Barto 1998).  

1.2 Reinforcement Learning approach 
Reinforcement Learning algorithms were taken into 
consideration in previous research studies by the au-
thor (Łącki 2007). In this approach the agent re-
ceives description of current situation from the envi-
ronment and chooses one of available actions. 
Environmental situation, which should fundamental-
ly affect agents’ behavior, is described by actual 
state and signal called reward. The agents’ goal is to 
maximize total amount of reward collected over 
time. In simpler case total accumulated reward is a 
sum of immediate rewards received in every time 
step. Unfortunately the results of extensive simula-
tions were insufficient in high-dimensional envi-
ronment, such as helmsman behavior in ship maneu-
vering on restricted waters. Since simulated model 
of environment consist only one active agent at a 
time, the overall learning speed was rather slow. It 
has occurred that the state space was too huge to al-
low the agent to learn effectively. Coarse coding of 
states (Sutton 1996) and simplification of state vec-
tor has speeded up learning process. At the same 
time inaccuracy in model of restricted waters envi-
ronment increases. In the long run the agent was 
able to take the proper action to actual task but had 
to learn correct behavior for slightly different task 
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by searching whole state space again. Due to limited 
computer resources the state space boundaries must 
be defined at the beginning of simulation. Further-
more to improve state-action pair value backups in 
episodic learning process the eligibility traces where 
used, which also requires additional memory re-
sources. 

In advanced tasks, particularly those with contin-
uous hidden states and high-dimensional spaces, 
evolutionary approach to artificial neural networks, 
has proven to be  more efficient.  

1.3 Neuroevolutionary approach 
Neuroevolution is evolving neural networks, both 
connection weights and structure, with genetic algo-
rithms. The main idea of using evolutionary neural 
networks (ENNs) in ship handling is based on train-
ing population of helmsmen (Łącki 2008).  

 

 
Figure 2. Model of restricted waters environment. 

 

The neural network is the helmsman’s mind al-
lowing him to make decisions based on actual navi-
gational situation which is represented by input sig-
nals received from environment. In each step the 
network calculates its output from signals received. 
These input signals are calculated from current situa-
tion of the environment, in this case: vessel in a con-
fined area.  

Neural network output value is the rudder angle. 
In actual evaluation there is only single output. Its 
value, which is calculated through evolution process 
of individuals in population, is normalized to rudder 
angle range from -35 degrees (port) to 35 degrees 
(starboard). There are plans to  introduce several 
neural network outputs with normalization in order 

to bring the approach close to neural network deci-
sion support systems. 

Classic artificial neural networks are not adequate 
in dynamic environment. Ship handling in restricted 
waters requires efficient network topology of 
helmsman’s mind. To create such structure appeared 
to be a difficult task. The main cause of this difficul-
ty comes from unknown hidden states and abundant 
variety of input signals. Furthermore evolutionary 
approach to neural networks is multi-agent system. 
It means that there are autonomous units searching 
for optimal solution simultaneously (Fig. 3). 

 

 
Figure 3. Multi-agent simulation system. Helmsmen compete 
with each other simultaneously to find the optimum route to 
goal. 

 

In agent-based systems most important is to de-
fine proper state vector from available data signals 
derived from environment. It is also crucial to de-
termine fitness function values received by the agent 
(Łącki 2008). Fitness calculation is of primary 
meaning when determining the quality of each indi-
vidual. Subsequently it defines helmsman’s ability to 
avoid obstacles while sailing toward designated 
goal. 

The fitness value of an individual is adjusted in 
two ways: from arbitrary set action values and from 
calculated values, i.e.: distance to goal, relative 
heading to goal, distance to closest obstacle, etc. 

Subjectively assigned action values are as fol-
lows: -1 if action leads to increase of the distance to 
goal in every time step, -10 when the ship is on the 
collision course (with an obstacle or shallow wa-
ters), +10 when she’s heading to goal without any 
obstacles on course, -100 when she hits an obstacle 
or run aground, +100 when ship reaches a goal and –
100 when she depart from the area in any other way, 
etc;  
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To simplify calculations ship’s dynamic was re-
duced. For example speed of the ship remains con-
stant despite significant radar deflection. 

1.4 Multi-criteria input signals 
Evaluation of quality of a state is to be treated as 
multi-criteria problem. Its aim is to estimate a risk 
factor of getting stranded, getting too close to the 
shore, encountering a vessel with dangerous cargo, 
etc. It can be estimated by function of ship’s posi-
tion, course and angular velocity and information 
gained from other vessels (if considered in the mod-
el) and coastal operators. One of the efficient meth-
ods to estimate  value of risk factor is Fuzzy TOP-
SIS (Filipowicz, Łącki & Szłapczyńska 2005). 

TOPSIS stands for Technique for Order Prefer-
ence by Similarity to an Ideal Solution. Was origi-
nated by Hwang and Yoon as a new multi-attribute 
decision making (MADM) method in 1981. Initially 
the approach was intended for crisp values then ex-
tended for fuzzy parameters (Chu & Lin 2003). 

The main concept of this method is based on dis-
tance calculation. The best alternative among the 
available set is the closest to the best possible solu-
tion and the farthest from the worst possible solution 
simultaneously. The best possible solution, referred 
to as an ideal one, is defined as a set of the best at-
tribute values, whereas the worst possible one, re-
ferred to as a negative-ideal solution, is a set of the 
worst at-tribute values. In this method every criteria 
is of benefit or cost type. In the discussed problem 
distance to closest obstacle is benefit criteria (should 
be kept as high as possible), while probability of en-
countering a vessel with dangerous cargo is a cost 
one (therefore is to be as low as justified). 

The final TOPSIS ranking is created by sorting 
the coefficient values assigned to each of the alterna-
tives in descending order. The alternative with the 
highest ranking value claims to be the best one. 

When vessels hits an obstacle or depart from the 
area in forbidden way then its position is reset to ini-
tial values and the helmsman receives negative 
points to his fitness value. The ones that reach the 
goal reset their positions to initial ones and increases 
helmsmen fitness values respectively. Therefore, af-
ter several dozen of episodes there will be some of 
the individuals distinguished by their high fitness 
values.  

The main goal of the individuals in population is 
to maximize their fitness values. This value is calcu-
lated from helmsman behavior during simulation as 
described above. The best-fitted individuals become 
parents for next generation.  

Offspring genome is calculated from parents’ ge-
nomes using evolutionary operations. 

2 EVOLUTIONARY OPERATIONS IN NEAT 
NETWORKS 

Neuroevolutionary systems are based on Topology 
and Weight Evolving Artificial Neural Networks 
(TWEANNs). These neural networks have the dis-
advantage that the correct although simplified topol-
ogy need not be known at the beginning – it will 
evolve through evolutionary operations.  

Among TWEANNs there is Neuro Evolution of 
Augmenting Topologies (NEAT). It is unique in that 
it begins evolution with a population of minimal 
networks and adds nodes and connections to them 
over generations, allowing complex problems to be 
solved gradually based on simple ones (Stanley & 
Miikkulainen 2002). This way, NEAT searches 
through a minimal number of weight dimensions and 
finds the appropriate complexity level of network 
topology adjusted to the problem. This process of 
complexification has important implications on 
search patterns. It may not be practical to find a so-
lution in a high-dimensional space by searching in 
that space directly. But it may be possible to find so-
lution by searching in lower dimensional spaces and 
further transfer of the best solutions into the high-
dimensional space. 

The NEAT network  delivers solutions to three 
fundamental problems in evolving artificial neural 
network topologies:  
− Innovation numbers line up genes with the same 

origin to allow disparate topologies to cross over 
in a meaningful way (innovation number is a 
unique value assigned to a new gene). 

− Separation of each innovation into a different 
species protects its disappearing from the popula-
tion prematurely. 

− Start from a minimal structure, add nodes and 
connections, incrementally discovers most effi-
cient network topologies throughout evolution. 

2.1 Selection 
There are many ways to select individuals to become 
potential parents for next generation. Replacing the 
entire population on each generation may cause fast 
convergence to local extremes since there is strong 
selection method causing that everyone’s genome 
would likely be inherited from best fitted individual. 
In addition, behaviors would remain static during the 
large gaps of time between generations.  

The alternative is to replace a single individual 
every few time intervals as it is done in evolutionary 
strategy algorithms (Beyer & Schwefel 2002). 
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Figure 4. Evolution in population without species. 

 
The worst individual, the one with lowest fitness 

value, is removed and replaced with an offspring of 
parents chosen from among the best. This cycle of 
removal and replacement happens continually 
throughout the simulation (Fig. 4). 

2.2 Crossover 
Every time a new connection gene appears in ge-
nome, what can only happen with mutation, a unique 
value is assigned to this gene called innovation 
number. Through innovation numbers, the system 
knows exactly which genes match up with  another. 
The numbers are inherited and during crossover re-
main? unchanged, and allow algorithm to perform 
evolutionary operations without the need for expen-
sive topological analysis. Genes that do not match 
are either disjoint or excess, depending on whether 
they occur within or outside the range of the other 
parent’s innovation numbers. 

During crossover the genes with the same innova-
tion numbers are lined up. The connection weights 
of matching genes are averaged. 

The disjoint and excess genes are inherited from 
the more fit parent or, if they are equally fit, from 
both parents. Disabled genes have a chance of being 
re-enabled during crossover, allowing networks to 
make use of older genes once again. 

2.3 Mutation 
Mutation is the main evolving mechanism in evolu-
tionary neural networks. It can change both network 
topology and connection weights.  

Connection weights mutate as in any neuroevolu-
tionary systems, with each existing connection be-
tween nodes either affected or not. 

Structural mutations, which form the basis of 
network complexity, occur in three ways. Each mu-
tation expands the size of the genome by adding 
genes. In the add connection mutation, a single new 
connection gene is added connecting two previously 
unconnected nodes. In the add node mutation, an ex-

isting connection is split and the new node placed 
where the old connection used to be. The old con-
nection is disabled and two new connections are 
added to the genome. In the add layer mutation, a 
new layer is created, if the maximum layer number 
has not been reached yet. After that there is possibil-
ity to evolve new nodes in that new layer by add 
node mutation.  

There are also mutations removing connections, 
nodes and layers and special mutation disabling par-
ticular node. This node can be re-enabled in future 
mutations. Probability of each type of mutation is 
obviously different but its value is of primary mean-
ing in efficient evolution. 

3 SPECIATION 

Speciation can be seen as a result from the same 
process as adaptation: natural selection exerted by 
interaction among organisms, and between organ-
isms and their environment. Divergent adaptation of 
different populations would lead to speciation.  

In the course of the modern synthesis in the 20th 
century a somewhat different view emerged that 
considered speciation and divergent adaptation, the 
two separate processes required for the origin of 
species diversity, mainly as resulting from different 
and unrelated mechanisms. Speciation of the popula-
tion assures that individuals compete primarily with-
in their own niches instead of competition within the 
whole population (Stanley & Miikkulainen 2005). In 
this way topological innovations are protected and 
have time to optimize their structure before they 
have to compete with other niches in the population. 

3.1 Algorithm 
When new individual appears in population, it must 
be assigned to one of the existing species or, if it is 
too innovative comparing to any other individuals, 
new species is created. The whole species assigning 
algorithm is presented below. 

 
Begin of the Genome Loop: 
 Take the next genome g from population P; 
 Begin of the Species Loop: 
  If all species in S have been checked: 
   create new species snew and place g in it; 
  Else 
  Get the next species s from S; 
  If g is compatible with s, add g to s; 
  If g has not been placed: 
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   continue the Species Loop; 
  Else exit the Species Loop; 
 If not all genomes in G have been placed: 
  continue the Genome Loop; 
 Else exit the Genome Loop; 
 
Compatibility of genome g with species s is esti-

mated accordingly to value of distance δ between 
two individuals which is calculated with formula 1: 

Wc
N
Dc

N
Ec

3
21 ++=δ  (1) 

where: c1, c2, c3 – weight (importance) coeffi-
cients; E – number of excesses; D – number of dis-
joints; W – average weight differences of matching 
genes; N – the number of genes in the larger ge-
nome. 

If δ ≤ δt , a compatibility threshold, then genome 
g is placed into this species. 

One can avoid the problem of choosing the best 
value of δ by making δt dynamic. The algorithm can 
raise δt if there are too many species in population, and 
lower δt  if there are too few. 

3.2 Fitness sharing 
Fitness sharing means that organisms in the same 
species must share the fitness of their niche. Thus, a 
species cannot afford to become too big even if 
many of its individuals perform well. 

Therefore, any one species is unlikely to take 
over the entire population, which is crucial for spe-
ciated evolution to maintain topological diversity. 
The adjusted fitness fi

’ for individual i is calculated 
according to its distance δ from every other individ-
ual j in the population: 
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The sharing function sh is set to 0 when distance 
δ(i,j) is above the threshold δt; otherwise, sh(δ(i,j)) is 
set to 1 (Spears 1995). Thus, sum of sh calculates 
the number of organisms in the same species as in-
dividual i. This reduction is natural since species are 
already clustered by compatibility using the thresh-
old δt. A potentially different number of offspring is 
assigned to every species. This number is propor-
tional to the calculated sum of adjusted fitness val-
ues fi

’ of its members.  
Species reproduce by first eliminating the lowest 

performing members from the population. In the 
next step the entire population is replaced by the off-
spring of the remaining organisms in each species 

(Fig. 5). The other selection methods in speciated 
population are also considered in future research, i.e. 
island selection or permanent isolation of best fitted 
individuals of every species with particular task. 

 

 
Figure 5. Evolution within one species in speciated population. 

 
The final effect of speciating the population is 

that structural innovations are protected. 

4 REMARKS 

Speciation of population in neuroevolutionary ma-
chine learning can effectively improve learning pro-
cess and decision making support in ship handling. 
Artificial neural networks with evolving topology 
and weights based on modified NEAT networks can 
increase learning speed of helmsmen. Complexity of 
considered model of ship maneuvering in restricted 
waters environment does not affect learning process 
very much. It is possible to use simulation models 
with much larger state space than it was possible in 
classic state machine learning algorithms without 
neural network function approximations (Kaelbling, 
Littman & Moore 1996). Issues like different selec-
tion methods of best fitted individuals, input signals 
encoding, splitting one output to several neural net-
work outputs with normalization of signal values are 
also worth to be revised in future research in area of 
artificial intelligence support towards ship handling. 
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