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So, What is Actually the Distance from the Equator to
the Pole? - Overview of the Meridian Distance
Approximations
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ABSTRACT: In the paper the author presents overview of the meridian distance approximations. He would like
to find the answer for the question what is actually the distance from the equator to the pole - the polar
distance. In spite of appearances this is not such a simple question. The problem of determining the polar
distance is a great opportunity to demonstrate the multitude of possible solutions in common use. At the
beginning of the paper the author discusses some approximations and a few exact expressions (infinite sums) to
calculate perimeter and quadrant of an ellipse, he presents convenient measurement units of the distance on the
surface of the Earth, existing methods for the solution of the great circle and great elliptic sailing, and in the end

he analyses and compares geodetic formulas for the meridian arc length.

1 INTRODUCTION

Unfortunately, from the early days of the
development of the basic navigational software built
into satellite navigational receivers and later into
electronic chart systems, it has been noted that for the
sake of simplicity and a number of other, often
incomprehensible reasons, this navigational software
is often based on the simple methods of limited
accuracy. It is surprising that even nowadays, at the
beginning of the twenty-first century, the use of
navigational software is still used in a loose manner,
sometimes ignoring basic computational principles
and adopting oversimplified assumptions and errors
such as the wrong combination of spherical and
ellipsoidal calculations (while in car navigation
systems — even primitive simple calculations on flat
surfaces) in different steps of the solution of a
particular sailing problem. The lack of official
standardization on both the “accuracy required” and
the equivalent “methods employed”, in conjunction to
the “black box solutions” provided by GNSS

navigational receivers and navigational systems
(ECDIS and ECS [Weintrit, 2009]) suggest the
necessity of a thorough examination, modification,
verification and unification of the issue of sailing
calculations for navigational systems and receivers.
The problem of determining the distance from the
equator to the pole is a great opportunity to
demonstrate the multitude of possible solutions in
common use.

2 THE MAIN QUESTION AND FIVE THE BEST AD
HOC ANSWERS

Well, let’s put the title question - what is actually
distance from the Equator to the Pole? And let us
consider what actually answer would we expect?
There will answers simple, crude, naive, almost
primitive, but also very sophisticated and refined, full
of mathematics. As it might seem at first glance,
surely the problem is not trivial.
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2.1 Answer No.1

It's exactly 10,000 km. This is because the definition of
a meter is 1 10,000,000th of the distance from the
North Pole to the equator. So it's exactly 10,000,000
meters from the North Pole to the equator, which is
exactly 10,000 km.

2.2 Answer No.2

10,002 kilometres. The original definition of a
kilometre was 1/10,000 of the distance from the
equator to the North Pole, but measurements have
improved.

2.3 Answer No.3

Easy, there are 90 degrees of distance from the
equator to the North Pole. Each degree has 60
minutes, each minute = 1 nautical mile, therefore 60 x
90 = 5,400 nautical miles.

2.4 Answer No.4

Angle between the equator and North Pole is 90°.
1 nautical mile = 1852 meters = 1’; 1° = 60’; just
multiply 60 x 90 x 1852. The answer is 10,000,800 m.

2.5 Answer No.5

If the question is: what is the distance from the North
Pole to the equator in degrees? - the answer is much
easier.

The measure of a circle in degrees is 360 degrees.
So the distance from Pole to equator is one quarter of
this; namely, 90 degrees.

2.6 What is Important in That Calculation?

Frankly speaking, all five answers are correct, and
also ... completely wrong. First of all we should
decide what length unit we will use for the
measurement, what model of the Earth will be used
for our calculations, and the accuracy of the result we
expect.

We know already that the Earth is not a sphere;
therefore our calculations should be a bit more
difficult. We will use the ellipsoid of revolution. Early
literature uses the term oblate spheroid to describe a
sphere "squashed at the poles". Modern literature uses
the term ‘'ellipsoid of revolution" although the
qualifying words "of revolution" are usually dropped.
An ellipsoid which is not an ellipsoid of revolution is
called a tri-axial ellipsoid. Spheroid and ellipsoid are
used interchangeably in this paper. Currently we use
to navigate the ellipsoid WGS-84 (World Geodetic
System 1984). The WGS-84 meridional ellipse has an
ellipticity £ =0.081819191.
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Pole

Semi-Minor Axis =
Polar Radius =h

(WGS-84 value = 6356752.3142 meters)

Semi-Major Axis =
Equatorial Radius =a
(NGS5-84 value = 63TH13T.0 meters)

Flattening = f=(a-h)a

(WGS-84 value = 1/1298.25T223563)
First Ecceniricity Squared = e#2 = 2£f*2
(WGS-84 value = 0.00660437900013)

Figure 1. Parameters of the ellipsoid WGS-84 [Dana, 1994]

3 MEASUREMENT OF THE DISTANE ON
SURFACE OF THE EARTH

We have to decide what unit of measurement we
would like to use for measuring the distance: miles or
metres. While the measure of one meter has been
strictly defined, miles seem to be made of chewing
gum. There are a lot of different miles, some of them
are measures of a fixed length, such as: geographical
mile, International Nautical Mile (INM), statue mile,
other of variable length dependent on the latitude of
location of measurement, such as: nautical mile or sea
mile.

3.1 Geographical Mile

Distances on the surface of a sphere or an ellipsoid of
revolution are expressed in a natural way in units of
the length of one minute of arc, measured along the
equator. This unit is known as the Geographical Mile.
Its value is determined by the dimensions of the
spheroid in use. We will use it throughout in our
treatment of navigational methods. Its length varies
according to the ellipsoid which is being used as the
model but, in these units, the radius of the Earth is
fixed at a value of 108,000/t. The length of one
minute of arc of the equator on the surface of the
WGS-84 ellipsoid is approximately 1,855.3284 metres.

3.2 The International Nautical Mile

The international nautical mile was defined by the
First International Extraordinary Hydrographic
Conference, Monaco (1929) as exactly 1852 metres.
This is the only definition in widespread current use,
and is the one accepted by the International
Hydrographic Organization (IHO) and by the
International Bureau of Weights and Measures
(BIPM). Before 1929, different countries had different
definitions, and the United Kingdom, the United
States, the Soviet Union and some other countries did
not immediately accept the international value.

Both the Imperial and U.S. definitions of the
nautical mile were based on the Clarke (1866)
spheroid: they were different approximations to the
length of one minute of arc along a great circle of a
sphere having the same surface area as the Clarke
spheroid. The United States nautical mile was defined



as 1,853.248 metres (6,080.20 U.S. feet, based on the
definition of the foot in the Mendenhall Order of
1893): it was abandoned in favour of the international
nautical mile in 1954. The Imperial (UK) nautical mile,
also known as the Admiralty mile, was defined in
terms of the knot, such that one nautical mile was
exactly 6,080 international feet (1,853.184 m): it was
abandoned in 1970 and, for legal purposes, old
references to the obsolete unit are now converted to
1,853 metres exactly [Weintrit, 2010].

3.3 Nautical Mile

A nautical mile is a unit of measurement used on
water by sailors and/or navigators in shipping and
aviation. It is the average length of one minute of one
degree along a great circle of the Earth. One nautical
mile corresponds to one minute of latitude. Thus,
degrees of latitude are approximately 60 nautical
miles apart. By contrast, the distance of nautical miles
between degrees of longitude is not constant because
lines of longitude become closer together as they
converge at the poles.

Each country can keep different, arbitrarily
selected value of the nautical mile, but most of them
use the International Nautical Mile, although in the
past it was different.

The unit used by the United Kingdom until 1970
was the British Standard nautical mile of 6,080 ft or
1,853.18 m.

Today, one nautical mile still equals exactly the
internationally agreed upon measure of 1,852 meters
(6,076 feet). One of the most important concepts in
understanding the nautical mile though is its relation
to latitude.

3.4 The Sea Mile

The sea mile is the length of 1 minute of arc,
measured along the meridian, in the latitude of the
position; its length varies both with the latitude and
with the dimensions of the spheroid in use.

The sea mile is an ambiguous unit, with the
following possible meanings:

In English usage, a sea mile is, for any latitude, the
length of one minute of latitude at that latitude. It
varies from about 1,842.9 metres (6,046 ft) at the
equator to about 1,861.7 metres (6,108 ft) at the poles,
with a mean value of 1,852.3 metres (6,077 ft). The
international nautical mile was chosen as the integer
number of metres closest to the mean sea mile.

American use has changed recently. The glossary
in the 1966 edition of Bowditch defines a "sea mile" as
a "nautical mile". In the 2002 edition [Bowditch, 2002],
the glossary says: "An approximate mean value of the
nautical mile equal to 6,080 feet; the length of a
minute of arc along the meridian at latitude 48°."

The sea mile has also been defined as 6,000 feet or
1,000 fathoms, for example in Dresner's Units of
Measurement [Dresner, 1971]. Dresner includes a
remark to the effect that this must not be confused
with the nautical mile. Richard Norwood in The
Seaman’s Practice (1637) determined that 1/60th of a

degree of any great circle on Earth's surface was 6,120
feet (vs. the modern value of 6,080 feet). However, he
stated: "if any man think it more safe and convenient
in Sea-reckonings" he may assign 6,000 feet to a mile,
relying on context to determine the type of mile.

3.5 The Statue Mile

The statue mile is the unit of distance of 1,760 yards
or 5,280 ft) 1609.3 m. The difference between a mile
and a statute mile is historical, rather than practical.

Hundreds of years a mile meant different things to
different people. It became necessary, eventually, for
a mile to be the same distance for all concerned.
During the reign of Queen Elizabeth I, a statute was
passed by the English Parliament that standardized
the measurement of a mile, thus giving rise to the
term 'statute’ mile. The measurement of a mile at
5,280 feet is now accepted almost everywhere in the
world.

3.6 History of the Mile

The nautical mile was historically defined as a minute
of arc along a meridian of the Earth (North-South),
making a meridian exactly 180x60 = 10,800 historical
nautical miles. It can therefore be wused for
approximate measures on a meridian as change of
latitude on a nautical chart. The originally intended
definition of the metre as 107 of a half-meridian arc
makes the mean historical nautical mile exactly
(2x107)/10,800 = 1,851.851851... historical metres.
Based on the current IUGG meridian of
20,003,931.4585 (standard) metres the mean historical
nautical mile is 1,852.216 m.

The historical definition differs from the length-
based standard in that a minute of arc, and hence a
nautical mile, is not a constant length at the surface of
the Earth but gradually lengthens in the north-south
direction with increasing distance from the equator,
as a corollary of the Earth's oblateness, hence the need
for "mean" in the last sentence of the previous
paragraph. This length equals about 1,861 metres at
the poles and 1,843 metres at the Equator.

Other nations had different definitions of the
nautical mile. This variety, in combination with the
complexity of angular measure described above and
the intrinsic uncertainty of geodetically derived units,
mitigated against the extant definitions in favour of a
simple unit of pure length. International agreement
was achieved in 1929 when the IHB adopted a
definition of one international nautical mile as being
equal to 1,852 metres exactly, in excellent agreement
(for an integer) with both the above-mentioned values
of 1,851.851 historical metres and 1,852.216 standard
metres.

The use of an angle-based length was first
suggested by Edmund Gunter (of Gunter's chain
fame). During the 18th century, the relation of a mile
of, 6000 (geometric) feet, or a minute of arc on the
earth surface, had been advanced as a universal
measure for land and sea. The metric kilometre was
selected to represent a centesimal minute of arc, on
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the same basis, with the circle divided into 400
degrees of 100 minutes.

3.7 History of the Metric System

The history of metric system is strictly connected with
polar distance calculation. The metre (meter in
American English), symbol m, is the fundamental unit
of length in the International System of Units (SI).
Originally intended to be one ten-millionth of the
distance from the Earth's equator to the North Pole (at
sea level), its definition has been periodically refined
to reflect growing knowledge of metrology. Since
1983, it has been defined as "the length of the path
travelled by light in vacuum during a time interval of
1/299,792,458 of a second".

The original "Sacred Cubit" was a unit of measure
equal to 25 British inches, and also equal to one 10-
millionth part of the distance between the North Pole
and the center of the Earth. In 1790 Charles
Talleyrand was sent to the Paris Academy of Sciences
in order to help establish a new worldwide system of
weights and measures meant to replace the English
system of weights and measures that was in use all
over the world at the time. This new French
measuring system would be based upon a new unit of
measure known as the "meter." The meter (from the
Greek word "metron") was designed to be a
counterfeit cubit, equal to one 10-millionth part of the
distance between the North Pole and the Equator:

Cubit = 1/10,000,000th part of distance from N.
Pole to Earth's Center;

Meter = 1/10,000,000th part of distance from N.
Pole to Earth's Equator.

The original Sacred Cubit was a length equal to 25
English inches, or 7 "hands." The "hand" measure is
still used today by people who raise horses, it is a
length of just under 4 inches (3.58 inches to be exact),
and is equal to the width of a man's hand, not
including the thumb.

A decimal-based unit of length, the universal
measure or standard was proposed in an essay of 1668
by the English cleric and philosopher John Wilkins. In
1675, the Italian scientist Tito Livio Burattini, in his
work Misura Universale, used the phrase metro cattolico
(lit. "catholic [i.e. universal] measure"), derived from
the Greek métron katholikén, to denote the standard
unit of length derived from a pendulum. In the wake
of the French Revolution, a commission organised by
the French Academy of Sciences and charged with
determining a single scale for all measures, advised
the adoption of a decimal system (27 October, 1790)
and suggested a basic unit of length equal to one ten-
millionth of the distance between the North Pole and
the Equator, to be called 'measure’ (meétre) (19th March
1791). The National Convention adopted the proposal
in 1793. The first occurrence of metre in this sense in
English dates to 1797.
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4 THE FORMULA FOR THE PERIMETER OF AN
ELLIPSE

The problem of calculating the distance from the
equator to the pole basically comes down to calculate
the perimeter of an ellipse and its quadrant. But
rather strangely, the perimeter of an ellipse is very
difficult to calculate!

major axis

Q¢

minor axis

Figure 2. Ellipse parameter: a - major axis; b — minor axis

For an ellipse of Cartesian equation x%/a>+ y?/b? =1

witha>b:

— ais called the major radius or semimajor axis,

— b is the minor radius or semiminor axis,

— the quantity & =11 = 5*/a*J¥* is the eccentricity
of the ellipse,

— the unnamed quantity h = (a-b)?/ (a+b)? often pops
up.

There is no simple exact formula to calculate
perimeter of an ellipse. There are simple formulas but
they are not exact, and there are exact formulas but
they are not simple. Here, we'll discuss many
approximations, and two exact expressions (infinite
sums). There are many formulas, here are a few
interesting ones only, but not all [Michon, 2012]:

Approximation 1

This approximation will be within about 5% of the
true value, so long as a is not more than 3 times longer
than b (in other words, the ellipse is not too
"squashed"):

)

Approximation 2

It is found in dictionaries and other practical
references as a simple approximation to the perimeter
p of the ellipse:

p~ ﬂ\/2(a2 ) @br ‘2”)2 @)

Approximation 3

An approximate expression, for e not too close to 1,
is:

pr(mb)—\/ﬁ} @)



Approximation 4

The famous Indian mathematician S. Ramanujan
in 1914 came up with this better approximation:

pxr|3(a+b)-\[(3a+b)(a+3b) | @

Approximation 5

The above Ramanujan formula is only about twice
as precise as a formula proposed by Lindner between
1904 and 1920, which is obtained simply by retaining
only the first three terms in an exact expansionin
terms of /1 (these three terms happen to form a perfect
square).

Firstly we must calculate "h":

(a-b)’
h=——"=-—

(a+b) ©
prr(a+b)1+h/8] (6)

Approximation 6

A better 1914 formula, also due to Ramanujan,
called Ramanujan II, gives the perimeter p:

p=7x(a+b) )

o)
10+~+4-3Ah

Approximation 7

R.G. Hudson is traditionally credited for a formula
without square roots which he did not invent and
which is intermediate in precision between the two
Ramanujan formulas.

643"
~r(a+b) 8
PRI toh ®

Approximation 8

A more precise Padé approximant consists of the
optimized ratio of two quadratic polynomials of & and
leads to the following formula:

256—48h—21h*

~m(a+b 9
T Y ETE ©
Approximation 9

One more popular approximation, Peano’s
formula:
p= ”(a*—b)w (10)

Infinite Series 1

An exact expression of the perimeter p of an ellipse
was first published in 1742 by the Scottish
mathematician Colin Maclaurin.

This is an exact formula, but it requires an "infinite
series" of calculations to be exact, so in practice we
still only get an approximation.

Firstly we must calculate e (the "eccentricity", not
Euler’s number “e”):

= (11)

Then use this "infinite sum" formula:

P=2a7r(1— 3 (2i)!2 e J

e N (12)
(241 2i—1

which may look complicated, but expands like this:

p=rani-(1] o[BS (2L | @
2 24) 3 246) 5

The terms continue on infinitely, and
unfortunately we must calculate a lot of terms to get a
reasonably close answer.

Infinite Series 2

Author’s favourite exact “infinite sum” formula
(because it gives a very close answer after only a few
terms) is as follows:

(14)

p=n(a +b)i(ojj h"

(05
Note: the

jis the binomial coefficient with half-
n

integer factorials.

It may look a bit scary, but it expands to this series
of calculations, now called the Gauss-Kummer series
of h:

p=r(a+b) TSIV NI (15)
4" 64

256

The more terms we calculate, the more accurate it
becomes (the next term is 25h*/16384, which is getting
quite small, and the next is 49h%65536, then
441h%/1048576).

Comparison of the results of calculations done
according to all the methods described above is
shown in Table 1.
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Table 1. Comparison of results of formulas for perimeter of an ellipse and its quadrant, for parameters a and b of ellipsoid

WGS-84, where a = 6,378,137 m, b=6,356,752.3142452 m

Method Formula Perimeter Quadrant
Approximation 1 D 40,007,891.12054030 10,001,972.78013510
Approximation 2 2) 40,007,862.91723600 10,001,965.72930900
Approximation 3 3) 40,007,862.91726590 10,001,965.72931650
Approximation 4 Ramanujan I (4) 40,007,862.91725090 10,001,965.72931270
Approximation 5 Lindner (6) 40,007,862.91725100 10,001,965.72931270
Approximation 6 Ramanujan II (7) 40,007,862.91725100 10,001,965.72931270
Approximation 7 Hudson (8) 40,007,862.91726090 10,001,965.72931520
Approximation 8 Pade (9) 40,007,862.91725090 10,001,965.72931270
Approximation 9 Peano (10) 40,007,862.91726590 10,001,965.72931650
Infinite Series 1 Maclaurin (13) 40,007,862.91811430 10,001,965.72952860
Infinite Series 2 Gauss-Kummer (15) 40,007,862.91725100 10,001,965.72931270

5 MERIDIAN ARC

On any surface which fulfils the required continuity
conditions, the shortest path between two points on
the surface is along the arc of a geodesic curve. On the
surface of a sphere the geodesic curves are the great
circles and the shortest path between any two points
on this surface is along the arc of a great circle, but on
the surface of an ellipsoid of revolution, the geodesic
curves are not so easily defined except that the
equator of this ellipsoid is a circle and its meridians
are ellipses [Williams, 1996].

In geodesy, a meridian arc measurement is a
highly accurate determination of the distance between
two points with the same longitude. Two or more
such determinations at different locations then specify
the shape of the reference ellipsoid which best
approximates the shape of the geoid. This process is
called the determination of the figure of the Earth.
The earliest determinations of the size of a spherical
Earth required a single arc. The latest determinations
use astrogeodetic measurements and the methods of
satellite geodesy to determine the reference ellipsoids.

5.1 The Earth as an Ellipsoid

High precision land surveys can be used determine
the distance between two places at "almost" the same
longitude by measuring a base line and a chain of
triangles (suitable stations for the end points are
rarely at the same longitude). The distance A along
the meridian from one end point to a point at the
same latitude as the second end point is then
calculated by trigonometry. The surface distance A is
reduced to A, the corresponding distance at mean sea
level. The intermediate distances to points on the
meridian at the same latitudes as other stations of the
survey may also be calculated.

The geographic latitudes of both end points, s
(standpoint) and s (forepoint) and possibly at other
points are determined by astrogeodesy, observing the
zenith distances of sufficient numbers of stars. If
latitudes are measured at end points only, the radius
of curvature at the mid-point of the meridian arc can
be calculated from R = A'/(l@s - @tl). A second
meridian arc will allow the derivation of two
parameters required to specify a reference ellipsoid.
Longer arcs with intermediate latitude determinations
can completely determine the ellipsoid. In practice
multiple arc measurements are used to determine the
ellipsoid parameters by the method of least squares.
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The parameters determined are usually the semi-
major axis, 4, and either the semi-minor axis, b, or the
inverse flattening 1/ f, (where the flattening is

fz(a—b)/a).

Figure 3. An oblate spheroid (ellipsoid)

5.2 Meridian Distance on the Ellipsoid

The determination of the meridian distance that is the
distance from the equator to a point at latitude ¢ on
the ellipsoid is an important problem in the theory of
map projections, particularly the Transverse Mercator
projection. Ellipsoids are normally specified in terms
of the parameters defined above, 4, b, 1/ f*, but in
theoretical work it is useful to define extra
parameters, particularly the eccentricity, ¢, and the
third flattening n. Only two of these parameters are
independent and there are many relations between
them [Banachowicz, 2006]:

f:a—b’ €2:f(2_f), n:a—bzi
a a+b 2-f (16)
b=a(l-f)=al1-¢* 1/2, e’ = 4n .
( f) ( ) (1+n)2
The radius of curvature is defined as
all-¢€*
M (p)= =) (17)

(1 - ezsinzgo)3/2 ’

so that the arc length of an infinitesimal element of
the meridian is M ((0) dp (with @ in radians).
Therefore the meridian distance from the equator to
latitude ¢ is



?

m((o):_[ ()d(p—al e)jzl esm(p%zd(p. (18)

0

The distance from the equator to the pole, the
polar distance, is

m =m(7z/2).

) (19)
The above integral is related to a special case of an
incomplete elliptic integral of the third kind.

m((o)za(l—ez)l'[((p,e,e). (20)

Many methods have been used for the
computation of the integral of formula (18). All these
methods and formula can be used for the calculation
of the distance along the great elliptic arc by formula
(21).

]1 a(l-¢€*) _dg @1)

(1-e smga)2

Equation (21) can be transformed to an elliptic
integral of the second type, which cannot be
evaluated in a closed form. The calculation can be
performed either by numerical integration methods,
such as Simpson’s rule, or by the binomial expansion
of the denominator to rapidly converging series,
retention of a few terms of these series and further
integration by parts. This process yields results like
formula (22).

M(?:a(l—ez)([n%eu... j (22)

Equation (22) is the standard geodetic formula for
the accurate calculation of the meridian arc length,
which is proposed in a number of textbooks such as in
Torge’s Geodesy using up to sin (2(p) terms.

According to Snyder [Snyder, 1987] and Torge
[Torge, 2001], Simpson’s numerical integration of
formula (21) does not provide satisfactory results and
consequently the standard computation methods for
the length of the meridian arc are based on the use of
series expansion formulas, such as formula (22) and
more detailed formulas presented below.

Delambre

The above integral may be approximated by a
truncated series in the square of the eccentricity
(approximately 1/150) by expanding the integrand in
a binomial series. Setting s =sin g,

-3/2

(1-¢é’sin’ @) * =1+be’s” +be's* +be’s® +he’s® +

(23)
where
3 15 35 315
b ==, b, =— b ==, b =",
) tg ° 16 ' 128

Using simple trigonometric identities the powers
of Sin@ may be reduced to combinations of factors
of cos2pe. Collecting terms with the same cosine
factors and integrating gives the following series, first
given by Delambre in 1799.

m(p)= dyp+ Ay sin 20+ A, sin4p +

(24)
Agsin6g+ A sin8p +...,
where:
Ay =a(1-e)[ 1436 4201 115 o 11025
4 T6a” T256° T 16384°
all-¢é*
A2=__()(3ez 15 , 525 , 2205 8}
4 16 512 2048
E iy 105 ot 2205 y
4 64 256 T 4096¢
a(l- ez)( FEIE) 8]
A6
512° " 2048

_a(l—e) 315
4= 8 [16384ej

The numerical values for the semi-major axis and
eccentricity of the WGS-84 ellipsoid give, in metres,

m(@)=6367449.146 ¢ —16038.509sin 2¢ +
16.833sin 4 —0.022sin 6¢ + 0.00003 sin 8¢

(25)

The first four terms have been rounded to the
nearest millimetre whilst the eighth order term gives
rise to sub-millimetre corrections. Tenth order series
are employed in  modern "wide  zone"
implementations of the Transverse Mercator
projection.

For the WGS-84 ellipsoid the distance from
equator to pole is given (in metres) by

m, =%7rAO =10001965.729m.

The third flattening 1 is related to the eccentricity
by

) 4n
¢ = 2
(1+n)

:4n(1—2n+3n2—4n3+.“) (26)

With this substitution the integral for the meridian
distance becomes

T 1+n)

3/2
0 1+2ncos2(p+n )

27)

do.

This integral has been expanded in several ways,
all of which can be related to the Delambre series.

Bessel’s formula

In 1837 Bessel expanded this integral in a series of
the form:
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m(p)= a(l—n)2 (1+n)[Dyp— D, sin2¢+ D, sin4p— D, sin6p+.. ],
(28)

where

D0=1+2n2+gn4+..., D4=En2+gn4+...,
4 64 16 64

D =3n4 B 38,5,

X n D, _3 3+ﬁns+
2 16 128

) =—H
48 256

ooy

Since n is approximately one quarter of the value
of the squared eccentricity, the above series for the
coefficients converge 16 times as fast as the Delambre
series.

Helmert’s formula

In 1880 Helmert extended and simplified the
above series by rewriting

(1=n) (1+n)=—=(1-n) 29)

+n

and expanding the numerator terms.

m(p) —L[HO(D—H2 sin2p+ H, sindp—H, sin6¢p+ Hysin8p+.. |

C1+n
(30)
with
2 4
H,=1+ + 2y H6:§n3+
64 48
3
HZ:é n-" 4 8:$n4 .
2 8 512
4
H4:15[n2—n+. j
16 4
UTM

Despite the simplicity and fast convergence of
Helmert's expansion the U.S. DMA adopted the fully
expanded form of the Bessel series reported by Hinks
in 1927. This expansion is important, despite the
poorer convergence of series in 1, because it is used in
the definition of UTM [Bowring, 1983].

m((p) =B,p+ B, sin2¢+ B, sin4g+ B, sinbp+ B, sin8¢+...,
(1)

where the coefficients are given to order n° by

1 1
B,=a 1—n+§n2—§n3+8—n4—8—n5+... ,
4 4 64 64
B,=——a n—nz+zn3 ! 4+§ns— ,
8 8 64
B4=15a(n2—n3+3n4 —n+ j,
16
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B =—£a n3—n4+£n5 - s
48 16
315 4
S—Ea(n —n +...),

Generalized series:

The above series, to eighth order in eccentricity or
fourth order in third flattening, are adequate for most
practical applications. Each can be written quite
generally. For example, Kazushige Kawase (2009)
derived following general formula [Kawase, 2011]:

(32)

S VB e T
Z[Hgk] {¢+Z(€—4ﬁ)51n2€(p1”:[18£+1)I)mm/z}

j=0 (=1

where

Truncating the summation at j = 2 gives Helmert's
approximation.

The polar distance may be approximated by the
Thomas Muir's formula:

72 32 p3i 2/3
— (M(o\do=TZl 4T |
= Prtone= 5]

(33)

6 EXISTING METHODS FOR THE SOLUTION OF
THE GREAT ELLIPTIC SAILING

6.1 Bowring Method for the Direct and Inverse Solutions
for the Great Elliptic Line

Bowring [Bowring, 1984] provides formulas for the
solution of the direct and inverse great elliptic sailing
problem. Bowring’s formulas can be used for the
calculations of the great elliptic arc length and the
forward and backward azimuths.

The method of Bowring for the calculation of great
elliptic arc length employs the use of an auxiliary
geodetic sphere and various types of coordinates,
such as, geodetic, geocentric, Cartesian and polar.
These formulas for the great elliptic distance have
been tested and it was proved that they provide very
satisfactory results in terms of obtained accuracy.
Nevertheless other simpler computations methods of
the length of the great elliptic arc can be used by the
employment of standard geodetic formulas for the
length of the arc of the meridian, after the proper
modification of the parameters of the meridian ellipse
with those of the great ellipse, such as formula (21).
The formulas used by Bowring for the calculation of
the forward and backward azimuths, unlike those for
the distance, are very much simpler than other
methods of the same accuracy [Pallikaris &
Latsas, 2009].



6.2 William’s Method for the Computation of the
Distance Along the Great Elliptic Arc

Williams [Williams, 1996] provides formulas for the
computation of the sailing distance along the arc of
the great ellipse. These formulas have the general
form of the integral of formula (21). For the
computation of the eccentricity e, and the geodetic
great elliptic angle @g of formula (21), Williams
provides simple and compact formulas. For the
evaluation of this integral Williams employs the cubic
spline integration method of Phythian and Williams
[Phythian & Williams, 1985].

6.3 Earle’s Method for Vector Solutions

Earle [Earle, 2000] has proposed a method of
computing distance along a great ellipse that allows
the integral for distance to be computed directly using
the built-in capabilities of commercial mathematical
software. This obviates the need to write code in
arcane computer languages. According to Earle, his
method has been prepared with the syntax of a
particular commercial mathematics package in mind.

6.4 Walwyn'’s Great Ellipse Algorithm

Walwyn [Walwyn, 1999] presented an algorithm for
the computation of the arc length along the great
ellipse and the initial heading to steer. The algorithm
uses various formulas for the calculation of distance
and azimuths (courses). In some cases, probably for
the sake of simplicity, these formulas are not the right
ones used in standard geodetic computations, as the
formulas for the transformation of the geodetic
latitudes to geocentric.

6.5 The Pallikaris and Latsas’s New Algorithm for the
Great Elliptic Sailing

Algorithm proposed by Pallikaris and Latsas
[Pallikaris & Latsas, 2009] was initially developed as a
supporting tool in another research work of the
Pallikaris on the implementation of sailing
calculations in GIS-based navigational systems
(ECDIS and ECS). The complete great elliptic sailing
problem is solved including, in addition to the great
elliptic arc distance, the geodetic coordinates of an
unlimited number of intermediate points along the
great elliptic arc. The algorithm has been developed
having a mind to avoid the use of advanced
numerical methods, in order to allow for the
convenient implementation even in programmable
pocket calculators.

The algorithm starts with the calculation of the
eccentricity of the great ellipse and the geocentric and
geodetic great elliptic angles of the points of
departure and destination. For this part of the
algorithm we wused the formulas proposed by
Williams [Williams, 1996] because they are simple,
straightforward and provide accurate results. For the
calculation of the length of the great elliptic arc we
used the standard geodetic series expansion formulas
for the meridian arc length that are presented in basic
geodesy textbooks like [Torge, 2001] after their proper
modification for the great ellipse.

Calculations of the Great Elliptic Distance:
Length of the great elliptic arc:

02 2
5, -

e \/(1 ~¢sin*(p,,))
a(l—ez)([uiez +"']¢’ge —(gez +£e4...jsin2(pge +...va2
P,

gel

(34)

up to Sin(8(p) terms.

6.6 The Snyder’s Series Approximations for the Meridian
Ellipse

Equation 21 is easily evaluated numerically and even
elementary methods such as Simpson's rule will work
but may not have sufficient precision, although an
algorithm described in [Williams, 1998] is known to
work well. It is preferable however, to use an
adaptive algorithm that adjusts the intervals of the
integrand according to the slope of the function.

The function f, (go) below is a compact harmonic
series approximation to equation 21 for meridional
distance [Snyder, 1987].

(35)

1i(0)- a[a0(0+ S, sin(2n¢)}

n=1

The coefficients are:

a=—|=-+—&' +——¢
8 32 1024

15 , 45
a,=|—& +——¢
256 1024
a,=—| ——=¢
3072

Distance M,, between two latitudes on the
meridional arc in the same hemisphere can be
determined using equation 20 i.e.

M, =fi(o,)-fi(9) (36)

Loss of significant digits is reduced for small
angular separations if differencing is applied to
equation 20 resulting in:

a0 (0.-0)+ 20, os(n (o) s (n (-0

n=1

(37)

which will be adapted later to give distance on the
great ellipse. There is also a companion harmonic
inversion series to equation 35, described by Snyder
and attributed to an earlier work [Adams, 1921] that
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used the Lagrange Inversion Theorem to construct the
inversion series. It provides geodetic latitude as a
function of normalized meridional distance. The
condensed form of this harmonic inversion series is:

5 (u) =bu+ ibn sin(2nu) (38)

the constants for which are:

b0=1

blzégl_ﬂgf
2 32

b, 2“5'12 55 14
16 332
151

b i 3

3 96 1
1097 £

i o

and

& =(1-Va)/(1+Va)

For each value of the normalized distance
M .
u= EV’ the function f2 (u) returns a value of

0
geodetic latitude ¢ corresponding to the given

meridional distance M. The constant M o 1is the

meridional distance from the equator to the pole i.e.
M, =f [%) or, equivalently, M, = a(aoﬁ/2).

Both of these series are periodic and can be used over
arcs spanning any interval in the range 0 <@ <27
[Earle, 2011].

6.7 The Deakin’s Meridian Distance M

Meridian distance M is defined as the arc of the
meridian ellipse from the equator to the point of
latitude ¢@.

This is an elliptic integral that cannot be expressed
in terms of elementary functions; instead, the
integrand is expanded by into a series using Taylor’s
theorem then evaluated by term-by-term integration.
The usual form of the series formula for M is a
function of ¢ and powers of e’ obtained from
[Deakin & Hunter, 2010], [Deakin, 2012]

32

(p -
I 1 e’sin’ ¢) do (39)
0

But the German geodesist F.R. Helmert (1880) gave
a formula for meridian distance as a function of @
and powers of n that required fewer terms for the
same accuracy. Helmert's method of development is
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given in [Deakin & Hunter, 2010] and with some
algebra we may write

a % -3

M:ml(l—n2)2(1+n2+2ncos2¢) do

(40)

It can be shown, using Maxima, that (39) and (40)
can easily be evaluated and M written as
j (41)

where the coefficients {bn} are to order €'’ as
follows:

[ bo@ +b,sin2p +b,sindep +
M=a (1 —e ) ) ) )
bysin6@ + bysin8¢p + b, ,sinl 0@ + ...

b021+§ez+£e4_}_1£e6 11025 & 43659610+
4 T64° T256° T16384° 65536
bzz__éez_p£§e4_ 525 2205 5 72765 0 _
8° 32 T1024° T 4096° 131072
b, = 15 4, 105 o 2205 10395
256 1024 16384 65536
35 o 105 5 10395 . _
©T73072° T 2096° " 262144
315 4 3465
s = e + e
131072 524288
693 o
0= T TAiT o€ —
1310720
or
M=—"

a |cup+c,sin2e+c,sindg+
l+n

}(42)

where the coefficients {Cn} are to order n° as
follows

CeSIN6Q + CoSin8¢ + ¢, ,sinl 0 +.

co—l+ln2+—n4+
4
C2__§ +i 3+in5
2 16 128
15, 15 ,
s = N T
16 64
35, 175
= ——
48 768
315 ,
Cg=—"n
512
693 .
10 =" n
1280

Note here that for WGS-84 ellipsoid, where a =
6,378,137 m and f = 1/298.257223563 the ellipsoid

constants n=n=1.679220386383705¢—-003 and
e’ =6.694379990141317e - 003 ) and
2
s~ € € [Williams, 2002], [Deakin, 2012].
1007 ~ 6.7



This demonstrates that the series (42) with fewer
terms in the coefficients {Cn} is at least as “accurate’

as the series (41). To test this consider the meridian
distance  expressed as a

M=M,+M,+M,+...

sum of terms

, where for series (41)

Moza(l—ez)bo(p, M, = ote.

a (1 - )bzsin2¢,M4 =a (1 - ez)b4sin4(p

and for series (42)

a a .
M,=——=cyp, M, =——c,sin2g,
1+n n , etc.
M, =2 ¢ sin4¢
Y en ? ’
Maximum values for M M, ,M,... occur at

latitudes @ =90°,45°,22.5°,... when @ = max or
sink@ =1 and testing the differences between terms
at these maximums revealed no differences greater
than 0.5 micrometres. So series (42) should be the
preferable method of computation. Indeed, further
truncation of the coefficients {cn to order n* and
truncating series (42) at (SIn8¢ revealed no
differences greater than 1 micrometre [Deakin, 2012].

Quadrant Length Q

The quadrant length of the ellipsoid Q is the length
of the meridian arc from the equator to the pole and is

1
obtained from equation (41) by setting ¢ = 57[ , and
noting that sin2e, sin4@,sinbe all equal zero,
giving

Q:a(lfez)bol =

(=) f1s 20 B S 1028, 565, |
4 64 256 16384 65536 2
(43)
Similarly, using equation (42)
0= -4l L L, U2 (44)
l+n o “ltn 4 64 2

7 GEODETIC FORMULAS FOR THE MERIDIAN
ARC LENGTH

7.1 The Snyder’s Series Approximations for the Meridian
Ellipse

The methods and formulas used to calculate the
length of the arc of the meridian for precise sailing
calculations on the ellipsoid, such as “rhumb-line
sailing”, “great elliptic sailing” and “geodesic sailing”
are simplified forms of general geodetic formulas

used in geodetic applications [Pallikaris, Tsoulos,
Paradissis, 2009]. In this section an overview of the
most important geodetic formulas along with general
comments and remarks on their use is carried out. For
consistency purposes and in order to avoid confusion
in certain formulas the symbolization has been
changed from that of the original sources.

Equation (21) can be transformed to an elliptic
integral of the second type, which cannot be
evaluated in a “closed” form. The calculation can be
performed either by numerical integration methods,
such as Simpson’s rule, or by the binomial expansion
of the denominator to rapidly converging series,
retention of a few terms of these series and further
integration by parts. According to Snyder [Snyder,
1987] and Torge [Torge, 2001], Simpson’s numerical
integration does not provide satisfactory results and
consequently the standard computation methods are
based on the use of series expansion formulas.
Expanding the denominator of (21) by the binomial
theorem yields:

Mg"—a-<1—e2)ji 1+iezsin2 +Ee4sin4 +§e"’sin6 dx
o L2 7% LT v

(45)

Since the values of powers of e are very small,

equation (45) is a rapidly converging series.
Integrating (45) by parts we obtain:

(1+3e2 +...j(p (3 e +— 15 ...jsinz(p+

0 ) 4 8

M =a (1 —-e )

( 15 o 105 j .

+ e’ +...|sindp+...
256° " 1024
(46)

Equation (46) is the standard geodetic formula for
the accurate calculation of the meridian arc length,
which is proposed in a number of textbooks such as in
Torge’s “Geodesy” using up to sin(2¢) terms, [Torge,
2001] and in Veis’ “Higher Geodesy” using up to
sin(8¢) terms [Veis, 1992]. A rigorous derivation of
(46) for terms up to sin(6¢), is presented in [Pearson,
1990].

Equation (46) can be written in the form of
equation (47) provided by Veis [Veis, 1992]

MY =a(1-¢*)(Myp—M, 20+ M, 49— M 6p+MBp+...)

(47)
M, 1 3 45 0 175 11025
4 T6a¢ T256° T163sa
A42:r262+~kie4+ 525 2205 4
8¢ "32° TT024° T2096°¢
15 4, 105 , 2205 ,
.= e’ + e +
256 "1024° T16334
35 . 315
6= e+ e+
3072 12288
315
g =———e +
131072
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Equation (48) is derived directly from equation
(47) for the direct calculation of the length of the
meridian arc between two points (A and B) with
latitudes @4 and ¢s. In the numerical tests for the
assessment of the relevant errors of selected
alternative formulas, we will refer to equations (47)
and (48) as the “Veis - Torge” formulas.

My =a(1-¢) [M,(p,~0s)-

M, (sin2¢, —sin2¢,) + M ,(sin4gp, —sindp,)— (48)

M (sin6¢p, —sin 6, )+ M(sin8p, —sin8p,)]

Equations (47) and (48) are the basic series
expansion formulas used for the calculation of the
meridian arc. They are rapidly converging since the
value of the powers of e is very small. In most
applications, very accurate results are obtained by
formula (47) and the retention of terms up to sin(6¢)
or sin(4¢) and 8t or 10t powers of e.

For sailing calculations on the ellipsoid it is
adequate to retain only up to sin (2¢) terms, whereas
for other geodetic applications it is adequate to retain
up to sin (4¢) or sin (6¢) terms. The basic formulas
(47) and (48) can be further manipulated and
transformed to other forms. The most common of
these forms is formula (49). Simplified versions of (49)
(retaining up to Asand e® terms only) are proposed in
textbooks such as in Bomford’s “Geodesy” [Bomford,
1985].

M =a(Ap—A,20+ A,4p— 4,60+ A8p...)  (49)
d=l—te 33 o 1T
4 64 256 16384
A4, _3 ez+—e4+Le(’ —568...
8 4 15 512

A, = 35 e’ + 175 e...
3072 12228
315
= e ...
4 131072

In the “Admiralty Manual of Navigation” [AMN,
1987] for the same formula (49) there are mentioned a
little different coefficients (Az2in particular):

4y=l-—e——e" ——¢" -
4 64 256
A2=E 2+le4+1—e6
8 4 1
4=1—5 NN
256 4
_ 35 6
© 3072

Another formula for the meridian arc length is
equation (50), which is used by Bowring [Bowring,
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1983] as the reference for the derivation of other
formulas, employing polar coordinates and complex
numbers. The basic difference of formula (50) from
(47), (48) and (49) is that (50) uses the ellipsoid
parameters (a, b), instead of the parameters (a, e)
which are used in formulas (47), (48) and (49).

3 15 35 315
M? =4 p—B =nsin2¢p———n’sin4p+—n’sin6p———n*sin8p+...
0 ‘(¢ AT PT 7510 ? J

(50)
aa+1n%2
A1=—8
1+n
31:1—5112
8
a-b
n=
a+b

Bowring [Bowring, 1985] proposed also formula
(1) for precise rhumb-line (loxodrome) sailing
calculations. This formula calculates the meridian arc
as a function of the mean latitude ¢@m and the latitude
difference A of the two points defining the arc on the
meridian.

M =a(AAp—A, cos (20, )sin(Ae) +
A, cos(4g,, )sin(2A¢9)— A, cos(60,, )sin(3Ag)+ (O1)
A, cos (S(pm ) sin (4A(p)

In (51), the coefficients Ao, Az, As, As, and As are
the same as in (49). Equation (49) has the general form
of equation (52).

AM = k,A¢ -k, cos(2¢,, )sin (A¢) +
k, cos (4gom ) sin (2A(p) —kg cos(6(pm )sin (3A(p) +
k cos (8¢, )sin (4A9)

(52)

In (52), the coefficients ko, ko, ks, ke, ks are: ko=a Ao,
ke=aA2 ki=aAs ke=aAs ks=aAs

7.2 The Proposed New Formulas by Pallikaris, Tsoulos

and Paradissis

The proposed new formulas for the calculation of the
length of the meridian in sailing calculations on the
WGS-84 ellipsoid in meters and international nautical
miles are (53) and (54), respectively [Pallikaris, et al,
2009].

M(/‘f’f =111132.95251-Ap—-16038.50861-
sin| 227 | _gin| L2 7
90 90

My¥ =60.006994-Agp—8.660102-

[an{ 2557l %57

(53)

(54)




— In both formulas (53) and (54) the values of
geodetic latitudes ¢4 and @s are in degrees and the
calculated meridian arc length in meters and
international nautical miles respectively. Formulas
(53) and (54) have been derived from (48) for the
WGS-84, since the geodetic datum employed in
Electronic Chart Display and Information Systems
is WGS-84. The derivation of the proposed
formulas is based on the calculation of the Mo and
M: terms of (48) using up to the 8th power of e.
This is equivalent to the accuracy provided by (49)
using Ao and Ao terms with subsequent e terms
extended up to the 10th power since in formula
(48) the terms Mo, M2, Ms... are multiplied by (1-
e?). According to the numerical tests carried out,
which are presented in the next section, the
proposed formulas have the following advantages:

— they are much simpler than and more than twice
as fast as traditional geodetic methods of the same

accuracy.

— they provide extremely high accuracies for the
requirements of sailing calculations on the
ellipsoid.

7.3 The Author’s Proposal

Taking into account that the polar distance for WGS-
84 is 10001965,7293127 m (see: Table 1) the author
proposes some modification to the formula (53)
proposed by Pallikaris, Tsoulos and Paradissis:

MJ» =6367449.1458234 - Ap -

(55)
16038.50862(sin (2¢, ) —sin (2, ))

with @ inradians, and result in meters).

This formula will be a little bit more accurate than
formula (53).

7.4  Numerical Tests and Comparisons

The different formulas and methods for the
calculation of meridian arc distances, which have
been initially evaluated and compared, are:

— the proposed new formulas by Pallikaris, Tsoulos
and Paradissis (53) and (54), with author’s
modification (55) ;

— “Veis -Torge” formulas (formulas (47) and (48)) in
various versions, according to the number of
retained terms (Ist version with up to M8 terms,
2nd version up to M6 terms, 3rd version up to M4
terms, 4th version up to M2 terms);

— The Bowring [Bowring, 1983] formula (50);

— The Bowring [Bowring, 1985] formula (51);

These numerical tests and comparisons have been
based on the analysis of the calculations of the length
of the polar distance. The results of the evaluated
formulas are shown in Table 2.

It is not surprise that they correspond to the results
presented in Table 1.

Table 2. Comparison of results of the calculations of polar
distance for ellipsoid WGS-84 on the base of meridian
distance formulas

Method Formula Quadrant

Deakin, 2010 (44) 10,001,965.72931270
Veis-Torge (48) 10,001,965.72922300
Bomford, 1985 (49) 10,001,965.72931360
AMN, 1987 (49) 10,001,965.72952860
Bowring, 1983 (50) 10,001,965.72931270
Pallikaris, et al, 2009 (53) 10,001,965.72590000
Weintrit, 2013 (55) 10,001,965.72931270

The proposed new formulas by Pallikaris, Tsoulos
and Paradissis [Pallikaris, et al, 2009] for the
calculation of the meridian arc are sufficiently precise
for sailing calculations on the ellipsoid. Higher sub
metre accuracies can be obtained by the use of more
complete equations with additional higher order
terms. Seeking this higher accuracy for sailing
calculations does not have any practical value for
marine navigation and simply adds more complexity
to the calculations only. In other than navigation
applications, where higher sub metre accuracy is
required, the Bowring formulas showed to be
approximately two times faster than alternative
geodetic formulas of similar accuracy.

8 CONCLUSIONS

Now we can surely state that for the WGS-84 ellipsoid
of revolution the distance from equator to pole is
10,001,965.729 m, which was confirmed by a number
of geometric and geodesic calculations presented in
the paper.

The proposed formulas can be immediately used
not only for the development of new algorithms for
sailing calculations, but also for the simplification of
existing algorithms without degrading the accuracies
required for precise navigation. The simplicity of the
proposed method allows for its easy implementation
even on pocket calculators for the execution of
accurate sailing calculations on the ellipsoid.

Original  contribution affects and verifies
established  views based on approximated
computational procedures used in the software of
marine navigational systems and devices. Current
stage of knowledge enables to implement geodesics
based computations which present higher accuracy. It
also lets to assess the quality of contemporary
algorithms used in practical marine applications. It
should be noted that an important step in the solution
is simplification by the omission of the expansion part
into power series of mathematical solutions,
previously known from the literature, i.e., [Torge,
2001] and [Veis, 1992], and reliance in the explanatory
memorandum of application, in particular, on the
amount of the available processing power of modern
calculating machine (processor). In the author's
opinion this criterion is relevant from a practical point
of view, but temporary, given the growth and
availability of computing power, including GIS
[Pallikaris et al., 2009], [Weintrit & Kopacz, 2011,
2012].
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Scientific workshop employed to solve the
problem makes use of various tools, i.e. of differential
geometry, marine geodesy (marine navigation),
analysis of measurement error, approximation theory
and problems of modelling and computational
complexity, mathematical and descriptive statistics,
mathematical cartography. Geometrical problems are
important aspect of the tested models which are used
as the basis of calculations and solutions implemented
in contemporary navigational devices and modern
electronic chart systems.

This paper was written with a variety of readers in
mind, ranging from practising navigators to
theoretical analysts. It was also the author’s goal to
present current and uniform approaches to sailing
calculations highlighting recent developments. Much
insight may be gained by considering the examples.
The algorithms applied for navigational purposes, in
particular in ECDIS, should inform the user on
actually used mathematical model and its limitations.
The shortest distance (geodesics) between the points
depends on the type of metric we use on the
considered surface in general navigation. It is also
important to know how the distance between two
points on considered structure is determined.

An attempt to calculate the exact distance from the
equator to the pole was just an excuse to look more
closely at the methods of determining the meridian
arc distance and the navigation calculations in
general.

The navigation based on geodesic lines and
connected software of the ship’s devices (electronic
chart, positioning and steering systems) gives a strong
argument to research and use geodesic-based
methods for calculations instead of the loxodromic
trajectories in general. The theory is developing as
well what may be found in the books on geometry
and topology. This should motivate us to discuss the
subject and research the components of the algorithm
of calculations for navigational purposes.

Algorithms for the computation of geodesics on an
ellipsoid of revolution are given. These provide
accurate, robust, and fast solutions to the direct and
inverse geodesic problems and they allow differential
and integral properties of geodesics to be computed
[Karney, 2011] and [Karney, 2013].
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