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ABSTRACT: More than 90% of world trade is transported by sea. The size and speed of ships is rapidly
increasing in order to boost economic efficiency. If ships collide, the damage and cost can be astronomical. It is
very difficult for officers to ascertain routes that will avoid collisions, especially when multiple ships travel the
same waters. There are several ways to prevent ship collisions, such as lookouts, radar, and VHF radio. More
advanced methodologies, such as ship domain, fuzzy theory, and genetic algorithm, have been proposed. These
methods work well in one-on-one situations, but are more difficult to apply in multiple-ship situations.
Therefore, we proposed the Distributed Local Search Algorithm (DLSA) to avoid ship collisions as a precedent
study. DLSA is a distributed algorithm in which multiple ships communicate with each other within a certain
area. DLSA computes collision risk based on the information received from neighboring ships. However, DLSA
suffers from Quasi-Local Minimum (QLM), which prevents a ship from changing course even when a collision
risk arises. In our study, we developed the Distributed Tabu Search Algorithm (DTSA). DTSA uses a tabu list to
escape from QLM that also exploits a modified cost function and enlarged domain of next-intended courses to
increase its efficiency. We conducted experiments to compare the performance of DLSA and DTSA. The results
showed that DTSA outperformed DLSA.

1 INTRODUCTION particularly when shipping lanes are crowded and

many ships encounter each other simultaneously,

Several methods are used to prevent ship collisions,
such as lookouts, radar, and VHF radio. More
advanced methodologies, such as ship domain, fuzzy
theory, and genetic algorithm, have been proposed
(Szlapczynski 2006, 2007, Goodwin 1975, Fujii &
Tanaka 1971, Hasegawa, Kouzuki, Muramatsu,
Komine, & Watabe 1989, Wang, Meng Xu, & Wang
2009, Lee, Kwon, & Joh 2004, Kim, Kang, & Kim
2001). However, in reality, collisions between ships
frequently occur. This is partly due to the ever-
increasing size and speed of ships each year. A
primary cause of ship collisions is officer error.
Officers generally have some expertise in finding safe
routes that will avoid ship collisions; however,

finding such routes is especially difficult for officers.
The need to repeat this task throughout the voyage
multiplies the risk of human error. To support the
need to find safe routes for ship travel in crowded
waters, we proposed the Distributed Local Search
Algorithm (DLSA) as a precedent study (Kim,
Hirayama, & Park 2014). In DLSA, we assume that
ships can exchange information with each other
(using a communication device such as the
Automatic  Identification  System  (AIS)) to
cooperatively establish routes to avoid collisions.
More specifically, when multiple ships meet, the ship
that can reduce collision risk most significantly has
the right to choose its next course. Where there is a

23



tie in the maximum risk reduction, the one with the
highest priority has the right to choose its next
course. These choices are then relayed to their
neighboring ships as their current courses. Each
individual ship computes its collision risk based on
the information on current courses that it receives
from the neighboring ships. This process is repeated
until the collision risk disappears. DLSA works well
empirically, but, according to our recent study, it is
sometimes trapped in Quasi Local Minimum (QLM)
that prevents a ship from changing course even when
at risk of collision.

To deal with this issue, we developed a new
distributed algorithm called the Distributed Tabu
Search Algorithm (DTSA). DTSA enables a ship to
search for a new course compulsorily when trapped
in QLM, to allow it to escape. Furthermore, DTSA
exploits a modified cost function and enlarged
domain of next-intended courses to increase its
efficiency. The cost function, which computes the
collision risk of the current course in DLSA, is
modified so that it includes the notion of efficiency.
More specifically, we add the relative bearing of the
current course to the destination. In this way, DTSA
enables ships to find shorter paths to their
destinations while avoiding collisions.

Our paper is organized as follows: in Section 2,
we outline the background of this work. We then
describe DLSA and DTSA in Section 3 and explain
how DTSA is applied to ship collision avoidance in
Section 4. We present our experimental analysis in
Section 5 and our conclusions in Section 6.

2 BACKGROUND

2.1 Existing methods for Collision Avoidance

There are many methods for preventing ship
collisions at sea. From a regulation point of view, the
1972 Convention on the International Regulations for
Preventing Collisions at Sea (COLREGs) (IMO 1972)
compels or recommends that ships follow specific
regulations, for example, navigational lights, traffic
laws of the waterways, and the buoyage system.
From a technological point of view, several
algorithms are used in ship collision avoidance, such
as ship domain (Fujii & Tanaka 1971, Goodwin 1975),
fuzzy theory (Hasegawa, Kouzuki, Muramatsu,
Komine, & Watabe 1989), and genetic algorithm (GA)
(Tsou, Kao, & Su 2010). The ship domain algorithm
computes collision risk depending on whether the
ship’s safety domain is penetrated. The fuzzy theory
computes the membership function for collision risk.
To compute collision risk, several parameters -
Variation of Compass Degree (VCD), Time to the
Closest Point of Approach (TCPA), and Distance to
the Closest Point of Approach (DCPA) -are used. The
GA is based on the principle of evolution, that is,
survival of the fittest. Tsou, Kao, & Su (2010) used
GA to find the safest and shortest path that also
complied with COLREGs. The fitness function is
defined as the distance from the turning point to the
original route. As chromosome constitution, there are
four parameters - avoidance time, turning angle,
restoration time and limited angle. They found
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optimum routes under three situations in which a
ship can encounter a target ship. Fan & Ajit (2014)
suggested collision avoidance without mutual
communication. They were inspired by nature, such
as the behavior of humans in crowded areas. In their
study, however, individual agents can stop at
anytime, which is impossible for ships. As mentioned
previously, these works well in one-on-one
situations, but, with multiple ships collisions may be
difficult to avoid. To solve this problem, we suggest
DLSA as a precedent study.

2.2 Distributed Local Search Algorithm

Local Search Algorithm (LSA) is a metaheuristic
method to solve the optimization problem and an in-
complete algorithm. Examples are hill-climbing,
simulated annealing, and the tabu search algorithm.
A solution may or may not be found for a certain
problem. LSA has been used for the nurse scheduling
and travelling sales-man problems. LSA is a
centralized system based on a computer or server. If
the system is broken, it is impossible to maintain it.
In comparison, DLSA does not have a server or a
computer (Russell & Norvig 2003, Yokoo, Durfee,
Ishida, & Kuwabara 1998, Yokoo & Hirayama 1996).
An individual agent solves a certain problem by
exchanging information with other agents locally.
DLSA is flexible during a system failure. DLSA is
easily applied to ship collision avoidance in multiple-
ships situations. All ships can chart their course
freely. They prefer a course that will allow them to
reach their destination safely and quickly. A certain
sea area, such as an entry port, crossing area, or
narrow area has no option but to be crowded because
all ships will travel in a similar pattern. In addition,
each individual ship must find a solution by itself
using local information. Therefore, we applied DLSA
to avoid ship collisions as precedent study.

2.3 Tabu Search Algorithm

Tabu Search (TS) is a heuristic method proposed by
Glover (Glover 1989). Tabu means prohibited. By
using memory to prohibit certain moves, TS searches
for global optimization rather than local
optimization. There are several kinds of memory
structures, such as, short, intermediate, and long-
term memory. The short-term memory prohibits a
solution (move) from being selected in the tabu list.
The intermediate-term memory may lead to bias
moves toward promising areas. The long-term
memory guides to new search areas for diversity. TS
is being used in integer programming, scheduling,
routing, and the traveling sales-man problem. In
conventional problems, application of the short-term
memory only is sufficient. In our paper, we use TS to
escape QLM, which prevents a ship in risk of
collision from changing course. In this paper, we
describe the new method with DTSA and the use of
DLSA as a precedent study for ship collision
avoidance.



3 ALGORITHM FOR SHIP COLLISION
AVOIDANCE

3.1 Ship Collision Avoidance by Distributed Local
Search

We propose DLSA to prevent ship collisions as a

precedent study. The variables used are:

— Time Step: estimated position in a specific time.

— Detection of Range: distance to recognized
neighboring ships.

— Neighboring Ships: ships located in the detection
range and able to exchange information.

— Safety Domain: distance that must be maintained
from neighboring ships. Ships entering this
domain are considered to have collided.

— Number of Collisions: expected number of
collisions with neighboring ships.

— Remaining Time: time remaining for the soonest
expected collision expected most rapidly.

— Collision Risk: sum of the number of collisions
and remaining time.

— Ok? Message: includes information on position,
speed, and course.

— Improvement Message: includes the number
indicating how much collision risk is reduced.

— ID: identification given at an initial state and used
when improvement is the same as that for a
neighboring ship. A ship with a higher priority ID
has the right to choose the next course.
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The procedures for preventing ship collisions are
shown in Figure 3. Each ship searches its vicinity to
find a target ship. If a target ship exists, it is
registered in the neighboring ships list. Individual
ships exchange an ok? Message and compute cost
function. If a collision risk exists, individual ships

exchange improvement messages. The ship with the
largest improvement has the right to choose the next
possible course. A ship with higher priority has the
right to select the next course if the improvement for
several ships is same. If the collision risk disappears,
the ships move to the next position. This process is
repeated until all ships arrive at the destination.
Simultaneously altering the course of neighboring
ships is restricted because of the possibility of
entering into an infinite loop. The ships all have four
types of variables — Time Step (T), Ship Domain (D),
Detection of Range (DoR), and Course (C). Figure 1
shows the difference based on DoR. Using DoR, the
number of recognizable neighboring ships changes.
The variable definitions are provided in Figure 2.
Any ship can prevent a target ship from penetrating
their safety domain. Figure 4 shows the simulation
with six ships. All ships arrived at their destination
without collision.

while ship does not arrive at destination do
Search a vicinity with Detection of Range
if ship exists then
Add ship to list of neighboring ships
end if
Send ok? Message to ship registered in the list of
neighboring ships
Add ok? Message of neighboring ship to list of ok?
Message
Calculate collision risk for each course
if collision risk then
Calculate improvement for each course
improvementy,y < max(improvement )
Send improvement,, . to neighboring ships
Add improvement,,, to list of neighboring ships
Compare improvement ;. with neighboring ship’s
IMpProvement y,
if improvementy,,, > improvementy,, of neigh-
bors then
Coursey,,, +— course with improvement
else if improvement,,, < improvementy,, of
neighbors then
Hold current course
else
if ID > ID of neighobrs then
Courseye, +— course with improvement,,
else
Hold current course
end if
end if
end if
Update Course
if Course yrrem # coursep,,, then
Course yrrent — COUFSEney
else
Hold Coursecyrrrent
end if
if no collision risk then
Proceed to next poisition based on course yrrens
end if
end while

Figure 3. Algorithm for Ship Collision Avoidance by DLSA
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Figure 4. Simulated encounters among 6 ships by
DLSA
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3.2 Ship Collision Avoidance by Distributed Tabu Search

DLSA suffers from QLM, in which a ship cannot
change its course even though a collision risk still
exists. To solve this problem, we applied DTSA.
DTSA enables individual ships to choose another
course compulsorily. For efficiency and simplicity of
the algorithm, we modified the cost function. To
compute the cost function, the relative bearing from
the ship’s heading to the destination is added. The
candidate courses are also modified. Table 1 shows
the difference between DLSA and DTSA. Figure 5
illustrates the DTSA procedure. All ships repeat this
process until they arrive at their destination. Each
ship checks for whether it has arrived the destination.
If not, the ship searches the vicinity to find a
neighboring ship. The ship exchanges an ok? Message
and improvement messages with its neighbors. The
ship with the highest improvement chooses the next-
intended course. If there is no collision, all individuals
move to the next position. If not, the ship exchanges
the exchanged information with its neighboring ship.
If a QLM situation occurs, the current selected course



is stored in the tabu list. The ship chooses the next-
intended course randomly except for any course in
the tabu list. If the collision risk has disappeared, all
ships move to the next position. Figure 6 shows a
simulation with five ships. All ships arrived at their
destination without collision.

Table 1. Difference between DLSA and DTSA
DLSA DTSA

Number of Number of expected
expected collisions collisions +
+remaining time  remaining time +
relative bearing from
heading to destination
User’s needs

Tabu Search

Difference

Cost function

Candidate courses 3 kinds
Remedy for QLM None

Figure 6. Simulated encounters among 5 ships by DTSA

4 EXPERIMENTS

Our experiment used six different situations
depending on the number of ships and ship position
to test the performance of DTSA as compared to
DLSA. Each variable has the following given values:
Safety Domain = {2, 3, 4} miles, Range of Detection =
{10, 20} miles, and Speed = {1, 2, 3}. The minus and
plus signs indicate the port and starboard,
respectively. To evaluate the performance, we
computed an average distance and the number of
failures. We used MATLAB for the experiments.
Table 2 shows the meaning of the index used in the
experimental results.

4.1 Experiment 1

We experimented with six ships with three variables.
Figure 7(left) illustrates the situation for experiment 1.
Table 3 shows the neighboring ship list. Each ship
records its neighboring ships in the list. That is, ship 1
recognizes ships 2 and 3. Ship 2 recognizes ships 1, 3,
and 5. There is no collision risk for ships 1, 3, 4, and 6,
but ships 2 and 5 are at risk of collision. All variables
are used by exchanging their values in one situation.
In total, forty-two experiments were conducted.
Figure 10 shows the result for experiment 1.
Compared with DLSA, DTSA has a better result. The
average distance and the amount of failures had a

tendency to decrease as the number of candidate
courses increased. The cases of 45 and ALL DTSA
showed the best results, which were no failures and
low average distance. Table 4 shows the variables and
values used in this experiment.
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Figure 7. Situation for experiments 1 (left) & 2 (right)
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Figure 8. Situation for experiments 3 (left, 10 ships with
same direction) & 4 (right, 20 ships with opposite direction)
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Figure 9. Situation for experiments 5 (left, 20 ship with same
direction) & 6 (right, 100 ships initialized randomly)

Table 2. Candidate course by Index used in experiments

Index Candidate course

15 -15°, 0°, +15°

30 -30°, 0°, +30°

45 -45°,0°, +45°

ALL -45°, -30°, -15°, 0°, +15°, +30°, +45°

Table 3. List of neighboring ships for experiment 1

Number of ships 1 2 3 4 5 6
1 X o o X X X
2 o X o X o X
3 o o X X X X
4 X X X X o o
5 X o X o X o
6 X X X 0 o X
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Table 4. Variables and values for experiment 1

Variables Values
Safety Domain 2, 3, 4(miles)
Range for Detection 10, 20(miles)
Speed 1(20 knots)

Result for #Exp 1

|:|

2 i p
) ! ) “a
/\—‘; 0y &_ ) !-v C N

Alporilhrn
DLSA : Distributed Local Search Algorithm
DTSA : Distributed Tabu Search Algorithm

@
Fail

% a7

o . -
G
&

2
I %

15: candidate course {-15, 0, +15}
30: candidate course {-30, 0, +30}
45: candidate course {-45, 0, +45}
ALL: candidate course {-45, -30,-15, 0, +15, +30, +45}

Clail == Avei

Figure 10. Result for experiment 1.

4.2  Experiment 2

In experiment 2, we experimented with five ships that
individual ships encounter, as shown in Figure
7(right). The tracks of ships 1, 2, 3, and 4 produced an
X shape. Ship 5 cuts across the space simultaneously.
Figure 11 shows the result for experiment 2. In the
experimental result, except for 15 DLSA, the average
distance showed similar figures. The cases of 30 and
ALL DTSA recorded no failures and low average
distance. 15 DLSA had the greatest drawback in terms
of average distance. Table 5 shows the variables and
the values for experiment 2.

Table 5. Variables and values for experiments 2-6

Variables Values
Safety Domain 2, 3, 4(miles)
Range for Detection 10, 20(miles)

Speed 1, 2, 3(1 => 1 mile/3 min)

Result for #Exp 2

15: candidate course {-15, 0, +15}
30: candidate course {-30, 0, +30}
45: candidete course {45, 0, +45}
ALL: candidate course {-45, -30, -15, 0, 15,430, +45}

DLSA: Distributed Lozal Search Algorithm
DTSA: Distributed Tabu Search Algorithm

—IFail =@=Average Distance

Figure 11. Result for experiment 2

28

4.3 Experiment 3

We experimented with ten ships traveling in the same
direction toward the destination, as shown in Figure
8(left). Figure 12 shows the result for experiment 3.
Compared with DLSA, DTSA demonstrated better
performance overall. All DTSA showed low and
uniform average distance. Among all DTSA, only 15
DTSA recorded a failure. Table 5 shows the variables
and values used in experiment 3.

Result for #Exp 3

2000 1830 1847 18ib 10

a0n

200 i I3 a 1 0 0 0

Algorithm
DLSA : Distributed Local Search Algorithm
DTSA : Distributed Tabu Search Algorithm

15: candidate course {-15, 0, +15}
30: candidate course {-30, 0, +30}
45: candidate course {-45, 0, +45}
ALL: candidate course {-45, -30,-13, 0, +13, +30, +45}

MRl —#— Averiage: Distianie

Figure 12. Result for experiment 3

4.4 Experiment 4

We experimented with twenty ships traveling in the
opposite direction away from the destination, as
shown in Figure 8(right). In this experiment, DLSA is
unable to compute a situation involving more than
twenty ships. We therefore used DTSA only in this
experiment. Figure 13 shows the result for experiment
4: the larger the candidate course, the smaller the
failure counts. ALL DTSA performed best in regard to
average distance and 45 DTSA had the highest
average distance. Only 15 DTSA recorded any failures
(seven). Table 5 shows the variables and values used
in experiment 4.

Result for #Exp 4
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15: candidate course {-15, 0, +15} DTSA : Distributed Tabu Search Algorithm

30: candidate course {-30, 0, +30}
45: candidate course {-45, 0, +45}
ALL: candidate course {-45, -30,-15, 0, +15, +30, +45}
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Figure 13. Result for experiment 4.

4.5 Experiment 5

We experimented with twenty ships moving in the
same direction toward the destination, as shown in
Figure 9(left). Table 5 shows the variables and values



used in experiment 5 and Figure 14 shows the result.
Failures occurred only in the 15 DTSA case (two).
ALL DTSA showed the lowest average distance and
45 DTSA showed the highest average distance. The
pattern of the experimental result was similar to that
of experiment 4.

Result for #Exp 5
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15: candidate course {-13, 0, +15}
30: candidate course {-30, 0, +20}
45: candidate course {-45, 0, +45}
ALL: candidate course {-45, -30, -15, 0, +15, +30, +45}

DTSA : Distributed Tabu Search Algorithm
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Figure 14. Result for experiment 5

4.6 Experiment 6

We used one hundred ships in experiment 6, as
shown in Figure 9(right). The ship positions and
headings were initialized randomly. The red and blue
circles indicate the origin and destination for the
individual ships. Table 5 shows the variables and
values used in experiment 6 and Figure 15 shows the
result. ALL DTSA had no failure and the lowest
average distance. In addition, the pattern of the result
showed a similar tendency to that of experiments 4
and 5.

Result for #Exp 6
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15: candidate course {-15, 0, +15} DTSA : Distributed Tabu Search Algorithm

30: candidate course {-30, 0, +30}
45: candidate course {-45, D, +45}
ALL: candidate course {-45, -30,-15, 0, +15, +30, +45}
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Figure 15. Result for experiment 6

5 CONCLUSION

We explained earlier that several algorithms work in
specific situations, such as one-on-one situations. To
avoid ship collisions in multiple-ship situations, we
applied DTSA and DLSA as a precedent study. We
used the tabu search algorithm to avoid the QLM
problem. We improved cost function by adding the
relative heading toward the destination and also

increased the candidate courses as per the users’
needs. Our experiments demonstrated how
individual ships can avoid collisions in multiple-ship
situations. In the experimental results, DTSA
outperformed DLSA. Some experiments showed
similar patterns: The more the number of candidate
courses is increased, the shorter the average distance;
the less the size of the degree of the candidate course,
the greater the failure count. This is because a ship
can bore off quickly if it drastically alters its course. In
experiments 4, 5, and 6, the experimental results’
patterns were similar. 45 DTSA recorded the highest
average distance. In the case of 45 DTSA, the range of
fluctuation for the candidate course was larger. ALL
DTSA showed the lowest average distance in most
cases. This means that the more candidate solutions,
the better the performance.
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