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ABSTRACT: The routing planning one of the classic problems in graph theory. Its application have various
practical uses ranging from the transportation, civil engineering and other applications. The resolution of this
paper is to find a solution for route planning in a transport networks, where the description of tracks, factor of
safety and travel time are ambiguous. In the study the ranking system based on the theory of possibility is

proposed.

1 INTRODUCTION

In many applications such as transportation, routing,
communications, economical, and so on, graphs
emerge naturally as a mathematical model of the
observed real world system. Fuzzy logic is a form of
many-valued logic or probabilistic logic; it deals with
reasoning that is approximate rather than fixed and
exact. Compared to traditional binary sets (where
variables may take on true or false values) fuzzy logic
variables may have a truth value that ranges in
degree between 0 and 1. Fuzzy logic has been
extended to handle the concept of partial truth, where
the truth value may range between completely true
and completely false. Djikstra's algorithm (named
after its discover, E.W. Dijkstra) solves the problem of
finding the shortest path from a point in a graph (the
source) to a destination. It turns out that one can find
the shortest paths from a given source to all points in
a graph in the same time, hence this problem is
sometimes called the single-source shortest paths
problem. Dijkstra's algorithm keeps two sets of
vertices:

— S: The set of vertices whose shortest paths from the

source have already been determined and

— V:-S the remaining vertices.

In finding the shortest path under uncertain
environment, an appropriate modelling approach is
to make use of fuzzy numbers. One of the most used
methods to solve the shortest path problem is the
Dijkstra algorithm. In the case of crisp number to
model arc lengths, the Dijkstra algorithm can be easily
to implemented. However, due to the reason that
many optimization methods for crisp numbers cannot
be applied directly to fuzzy numbers, some
modifications are needed before using the classical
methods.(Boominathan and Kanchan, 2014)

Routing problems in networks are the problem in
the context of sequencing and in recent times, they
have to receive progressive note. Congruous issues
usually take places in the zones of transportation and
communications. A schedule problem engages
identifying a route from the one point to the other
because there are many of optional tracks in
miscellaneous halting place of the passage. The cost,
time, safety or cost of travel are different for each
routes. Theoretically, the method comprises
determining the cost of all prospective tracks and the
find with minimal expense. In fact, however, the
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amount of such options are too large to be tested one
after another. A traveling salesman problem is a
routing problem associated with preferably strong
restrictions. Different routing problem emerges when
it can to go from one point to another point or a few
points, and choose the best track with the at the
lowest estimate length, period or cost of many options
to reach the desired point. Such acyclic route network
problem easily can be solved by job sequencing. A
network is defined as a series of points or nodes that
are interconnected by links. One way to go from one
node to another is called a path. The problem of
sequencing may have put some restrictions on it, such
as time for each job on each machine, the availability
of resources (people, equipment, materials and space),
etc. in sequencing problem, the efficiency with respect
to a minimum be measured costs, maximize profits,
and the elapsed time is minimized. The graph image
and the example of costs of borders are given in the
figure 1. In this hypothetical idea the tract network is
illustrated by a graph. Presented graph is given with
an ordered pair G: = (V, E) comprising a set V of
vertices or nodes together with a set E of edges
(paths), which connect two nodes. The task is to reach
the N1 node from N3 node in the graph at smallest
cost.(Neumann, 2016)

2 PATH FINDING ALGORITHMS

A path finding algorithm for transit network is
proposed to handle the special characteristics of
transit networks such as city emergency handling and
drive guiding system, in where the optimal paths
have to be found. As the traffic condition among a
city changes from time to time and there are usually a
huge amounts of requests occur at any moment, it
needs to quickly find the best path. Therefore, the
efficiency of the algorithm is very important . The
algorithm takes into account the overall level of
services and service schedule on a route to determine
the shortest path and transfer points. There are
several methods for pathfinding: In Dijkstra's
algorithm the input of the algorithm consists of a
weighted directed graph G and a source vertexes in
Graph. Let’s denote the set of all vertices in the graph
G as V. Each edge of the graph is an ordered pair of
vertices (u, v) representing a connection from vertex u
to vertex v. The set of all edges is denoted E. Weights
of edges are given by a weight function w: E — [0,
o]; therefore w (u, v) is the non-negative cost of
moving from vertex u to vertex v. The cost of an edge
can be thought of as the distance between those two
vertices. The cost of a path between two vertices is the
sum of costs of the edges in that path. For a given pair
of vertices s and t in V, the algorithm finds the path
from s to t with lowest cost (i.e. the shortest path). It
can also be used for finding costs of shortest paths
from a single vertex s to all other vertices in the graph
(Boominathan and Kanchan, 2014).

An ordered pair of sets G = (V, E) where V is a
nonempty finite set and E consisting of 2-element
subsets of elements of V is called a graph. It is
denoted by G = (V, E). V is called vertex and edge set
respectively. The elements in V and E are called
vertices and edges respectively. If elements of E are
ordered pairs, then G is called a directed graph or
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digraph. The vertices between which an edge exists
are called endpoints of the edge. An edge whose
endpoints are the same is called a loop. A graph
without loops is called a simple graph.

2.1 Dijkstra’s algorithm

For a given source vertex (node) in the graph, the
algorithm finds the path with lowest cost (ie the
shortest path) between that vertex and every other
vertex. It can also be used for finding the shortest cost
path from one vertex to a destination vertex by
stopping the algorithm is determined by the shortest
path to the destination node. For example, if the
vertices of the graph represent the city and are the
costs of running paths edge distances between pairs
of cities connected directly to the road, Dijkstra's
algorithm can be used to find the shortest route
between one city and all other cities. As a result, the
shortest path algorithm is widely used routing
protocols in a network, in particular the IS - IS and
Open Shortest Path First. (Neumann, 2014)

Short characteristic of Dijsktra algorithm [2].

— The input of the algorithm consists of a weighted
directed graph G and a source vertex s in G

— Denote V as the set of all vertices in the graph G.

— Each edge of the graph is an ordered pair of
vertices (u,v)

— This representing a connection from vertex u to
vertex v

— The set of all edges is denoted E

— Weights of edges are given by a weight function
w:E — [0, =)

— Therefore w(u,v) is the cost of moving directly
from vertex u to vertex v

— The cost of an edge can be thought of as (a
generalization of) the distance between those two
vertices

— The cost of a path between two vertices is the sum
of costs of the edges in that path

— For a given pair of vertices s and t in V, the
algorithm finds the path from s to t with lowest
cost (i.e. the shortest path)

— It can also be used for finding costs of shortest
paths from a single vertex s to all other vertices in
the graph.

Figure 1. Dijkstras algorithm on tree graph

3 FUZZY NUMBERS AND POSSIBILITY THEORY

In case when there is need to model uncertainty that
originates in indistinguishability, vagues etc. it is not
suitable to use statistical approaches and alternative
approaches is necessary (Ghatee and Hashemi, 2009).



Alternative framework for all essential operations can
be found in Fuzzy set theory and Possibility theory.
(Caha and Dvorsky, 2015)

3.1 Fuzzy Numbers

Fuzzy numbers are special cases of convex, normal
fuzzy sets defined on R with at least piecewise
continuous membership function, that represent
vague, imprecise or ill-known value (Ghatee and
Hashemi, 2009). There are several types of fuzzy
numbers, commonly used are triangular and
trapezoidal ones, however other shapes are possible
as well (Ghatee and Hashemi, 2009). Triangular and
trapezoidal fuzzy numbers are often used because
calculations with them and their comparison can be
done relatively easily, but it is much better if
calculations and comparisons can be done for any
shape of fuzzy numbers.

The most general type of fuzzy numbers that can
be utilized for calculations are so called piecewise
linear fuzzy numbers, these fuzzy numbers are
defined as a set of a-cuts (Ghatee and Hashemi, 2009).
They can approximate any given shape and in their
most simple representation are equal to triangular or
trapezoidal fuzzy numbers.

If there is need to combine fuzzy numbers with
classic crisp values then crisp numbers are treated as
special case of fuzzy number, where all a-cuts are the
same degenerative interval (Ghatee and Hashemi,
2009).
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Figure 2. Example of triangular fuzzy number

3.2 Fuzzy Arithmetic

In order to perform basic arithmetic operations with
fuzzy numbers there is need for apparatus that allows
and specifies such operations. The most general form
of such rule is specified by so called extension
principle (Zadeh, 1975), however this particular
definition is complicated in terms of implementation,
so alternative approaches that utilize decomposition
theorem and interval arithmetic are used (Ghatee and
Hashemi, 2009). The decomposition theorem states
that every fuzzy number (or generally any fuzzy set)
A can be described by associated sequence of a-cuts.
An a-cut is an interval where all the objects have
membership at least equal a. Formally it can is
written as: cutagA) =A, ={xeX|uz(x)2a} (Ghatee
and Hashemi, 2009). Such a-cut of a fuzzy number is
always closed interval A,=[a,+b,] . The only
necessary arithmetic operation for determination of

shortest path is addition, using decomposition
theorem and interval arithmetic the addition of fuzzy
number A, B is (Moore et al., 2009):

A, + B, =2, +b,.3, +B, ] (1)

for each « €[0,1]. Using this approach the addition of
any two fuzzy numbers is possible (Caha and
Dvorsky, 2015).

3.3 Possibility theory

To allow decision making based on fuzzy numbers
there is a need for a system that will allow ranking of
fuzzy numbers. There are several such systems
however most of them consider only one point of
view on the problem (Dubois and Prade, 1983). The
complete set of ranking indices in the framework of
possibility theory was proposed in (Dubois and
Prade, 1983). This ranking system uses possibility and
necessity measures to determine relation of two fuzzy
numbers (Caha and Dvorsky, 2015).

Utilization of possibility theory allows also
semantically describe fuzzy numbers as possibility
distributions (Zadeh, 1975). This semantic than help
us explaining what such fuzzy numbers mean. The
values with membership value 1 are believed to be
absolutely possible or unsurprising, thus they should
cove the most likely result. With decreasing degree of
membership the possibility of obtaining given result
decreases and the surprise rises. When membership
value reaches 0 then such result is impossible (or
almost impossible at some cases) and the surprise that
such result would present is maximal. Such semantics
helps with practical explanation what the results truly
mean.

To asses position of fuzzy number X to the fuzzy
number Y four indices are needed (Dubois and
Prade, 1983). Two of them define possibility and

necessity that X is at least equal or greater than Y

Iy ([Y~,oo)) = stpmin(,ui (X)’i?;w (y)] (2)
N ([V>e0)) =inf maX[l ~ K3 (X)aSygr; Hy (y)] ®)

The other two determine if X is strictly greater
than Y :

Iy ([V,oo))—sgpmin(,ui(x),igﬁl—,u\((y)j 4)
Ny ([V,w))zir)l(fmax[l—,ui (X),igf;(l—yv(y)j (5)

Together these indices allow comparison of any
two fuzzy numbers, based on pairwise comparison
any set of fuzzy numbers can be sorted.
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For both set of indices there are four situations of
the combinations of possibility and necessity that can
be outcome of the calculation. In this paragraph both
relations — at least equal or greater, and strictly
greater — are referred as relation, because the
descriptions are valid for both pairs of indices. The
first situation is when Iy ([Y,oogi)z Ny V,oo) =0,
which means that X is definitely does not fulfil the
given relation to Y . Then there is opposite situation
in which X completely satisfy the relation. The
other two relations contains some uncertainty,
because they indicate certain results but they cannot
provide them absolutely. The first of those is situation
when TIy [Y,oo) >0 and NX([V,oo))zo. This means
that there is possibility that X might satisfy the
relation, but it is not necessary. Obviously that means
that the indicators are not strong. The last possible
combipation of wvalues is TIy ([Y,oo) =1 and
Ny (EY,oo) >0. In such case again it the relation is not
satisfied "absolutely but the indicators are much
stronger than in previous case (Caha and Dvorsky,
2015).

4 FUZZY GRAPH THEORY

It is quite well known that graphs are simply models
of relations. A graph is a convenient way of
representing information involving relationship
between objects. The objects are represented by
vertices and relations by edges. When there is
vagueness in the description of the objects or in its
relationships or in both, it is natural that we need to
design a 'Fuzzy Graph Model' (Sunitha and Sunil,
2013).

That is well known that a graph is a symmetric
binary relation on a nonempty set V. Similarly, a
fuzzy graph is a symmetric binary fuzzy relation on a
fuzzy subset. The concept of fuzzy sets and fuzzy
relations was introduced by L.A.Zadeh (Zadeh, 1975).
It was (Rosenfeld, 1975) who considered fuzzy
relations on fuzzy sets and developed the theory of
fuzzy graphs in 1975.

A graph is a convenient way of representing
information involving relationship between objects.
The objects are represented by vertices and relations
by edges. In many real world problems, we get partial
information about that problem. So there is vagueness
in the description of the objects or in its relationships
or in both (Myna, 2015).
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5 CONCLUSIONS

The modification of the Dijkstra algorithm aims to
provide support for better decision-making in
situations of uncertainty. It should be helpful, but all
solutions cannot be distinguished by providing. This
is used of theory possibility to manage the
uncertainty and the ambiguity.

The use of fuzzy numbers as weights in the graph
allows for better modelling of real situations where
the time travel from one point to another cannot be
specified exactly or other similar cases. The time as a
sharp number can indicate a much idealization and
simplification of the problem because the algorithms
for the search then optimal way idealized to produce
solutions that are not in the calculation of either
uncertainty or the amount of dissimilarity of the
solutions.

REFERENCES

Boominathan, P., Kanchan, A., 2014. Routing Planning As
An Application Of Graph Theory. International journal
of scientific & technology research 3, 61-66.

Caha, J., Dvorsky, J., 2015. Optimal path problem with
possibilistic weights, in: Geoinformatics for Intelligent
Transportation, Lecture Notes in Geoinformation and
Cartography. Springer International Publishing, pp. 39—
50

Dubois, D., Prade, H., 1983. Ranking Fuzzy Numbers in the
Setting of Possibility Theory. Information Sciences 30,
183-224.

Ghatee, M., Hashemi, S.M., 2009. Application of fuzzy
minimum cost flow problems to network design under
uncertainty. Fuzzy Sets and Systems 160, 3263-3289.

Moore, R.E., Kearfott, R.B., Cloud, M.J., 2009. Introduction
to interval analysis. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Myna, R, 2015. Application of Fuzzy Graph in Traffic.
International Journal of Scientific & Engineering
Research 6, 1692-1696.

Neumann, T. 2016. The Shortest Path Problem with
Uncertain Information in Transport Networks, in:
Mikulski, J. (Ed.), Challenge of Transport Telematics,
Communications in Computer and Information Science.
Springer International Publishing, pp. 475-486.

Neumann, T., 2014. Method of Path Selection in the Graph -
Case Study. TransNav, the International Journal on
Marine Navigation and Safety of Sea Transportation 8,
557-662. doi:DOI: 10.12716/1001.08.04.10

Rosenfeld, A., 1975. Fuzzy graphs, in: Zadeh, L.A., Fu, K.S.,
Shimura, M. (Eds.), Fuzzy Sets and Their Applications.
Academic Press, New York, pp. 77-95.

Sunitha, M.S., Sunil, M., 2013. Fuzzy Graph Theory: A
Survey. Annals of Pure and Applied Mathematics 4, 92—
110.

Zadeh, L.A., 1975. The concept of a linguistic variable and
its application to approximate reasoning. Information
Sciences 8, 199-249.



