

International Journal
on Marine Navigation
and Safety of Sea Transportation

Volume 2
Number 2
June 2008

157

Reinforcement Learning in Ship Handling

M. Lacki
Gdynia Maritime University, Gdynia, Poland

ABSTRACT: This paper presents the idea of using machine learning techniques to simulate and demonstrate
learning behaviour in ship manoeuvring. Simulated model of ship is treated as an agent, which through
environmental sensing learns itself to navigate through restricted waters selecting an optimum trajectory.
Learning phase of the task is to observe current state and choose one of the available actions. The agent gets
positive reward for reaching destination and negative reward for hitting an obstacle. Few reinforcement
learning algorithms are considered. Experimental results based on simulation program are presented for
different layouts of possible routes within restricted area.

1 INTRODUCTION

Reinforcement Learning is actually a very actively
researched topic in artificial intelligence. The main
idea of reinforcement learning is based on agent
interactions with environment (Fig 1.)

Fig. 1. General reinforcement learning model

The agent is a learning unit able to make
decisions based on actual state and set of available
actions. The outside element it interacts with is
called the environment. In every time step agent
choose one action and receives description of current
situation from the environment. This situation is
described by actual state and signal called reward.
The agents goal is to maximize total amount of
reward collected over time. In simplest case total

accumulated reward is a sum of immediate rewards
received in every step (Eq. 1).

Tttt rrrR +++= ++ ...21 (1)

where T = terminal (final) state.
Some tasks have a continual character like

process-control tasks thus there is no distinguished
final state and T → ∞ .

Additional useful concept in this case is
discounting (Sutton & Barto 1998) (Eq. 2.)

∑
∞

=
+++++ ⋅=+⋅+⋅+=

0
1321 ...

k
kt

k
tttt rrrrR γγγ (2)

where γ = discount rate and 0 ≤ γ ≤ 1.
The discount rate determines importance of future

rewards. Reward received k time steps later is worth
γk-1 times less what it would be worth when received
immediately. If γ<1 then the infinite sum of rewards
has a finite value. When γ is closer to one than agent
takes future rewards into account more strongly thus
it becomes more far-sighted.

158

Problems with delayed reinforcement are modeled
as Markov Decision Processes (MDPs) (Kaelbling &
Littman & Moore 1996).

An MDP consists of:
− a set of states S,
− a set of actions A,
− a reward function R : S × A → R
− a state transition function T : S × A → P(S),

where a member of P(S) is a probability
distribution over the set S (i.e. it maps states to
probabilities). We write T(s,a,s’) for the
probability of making a transition from state s to
state s’ using action a.
There is Markov Property that says that the model

of environment is Markov if the state transitions are
independent of any previous environment states or
agent actions.

During learning process agent will choose an
action according to some general rules called policy,
denoted as π. Policy is a mapping from states s and
actions a to the probability of π(s,a) which is taking
action a in state s. Value of a state under policy π,
denoted as Vπ(s), is the expected return when agent
starts in state s and follows policy π.

∑
∞

=
++ =⋅Ε==Ε=

0
1 }|{}|{)(

k
tkt

k
tt ssrssRsV γππ

π

 (3)
Some detailed description of basic reinforcement

learning algorithms is presented in the next chapter.

2 ALGORITHMS

2.1 V-Learning
Reinforcement learning algorithms tries to estimate
value functions – values of states that say how good
it is for an agent to be in given state.

In V-Learning algorithm agent learns value of
visited states. The policy is created with one step
state prediction for each action.

))()'(()()(sVsVrsVsV −⋅+⋅+← γα (4)
where V(s) = value of state s; V(s’) = value of next
state s’; α = learning rate.

2.2 Q-Learning
Q-Learning algorithm (Sutton & Barto 1998)
calculates values of state-action pairs. It tries to find
an optimal state-action value function Q*
independent of the policy being followed. This is
off-policy temporal difference algorithm.

In every step actual Q(s,a) value is updated with δ
value calculated from gained reward and maximum
possible value of next state-action value function.

),()','(max asQasQr −⋅+← γδ (5)
where r = immediate reward.
Procedural form of Q-Learnig algorithm:
Initialize Q(s,a) arbitrarily
Repeat (for each episode):
 Initialize s
 Repeat (for each step of episode):
 Choose a from s using policy π derived from Q

(e.g., ε-greedy)
 Take action a, observe r, s’

),()','(max asQasQr −⋅+← γδ
δα ⋅+←),(),(asQasQ

s ← s’
 until s is terminal.

In this case an agent trained using an off-policy
method may end up learning tactics that it did not
necessarily exhibit during the learning phase – action
corresponding to maximum possible state-action
value may not be chosen.

2.3 SARSA
SARSA is on-policy temporal difference algorithm.
For each step of episode Q(s,a) value is updated with
values of {s,a,r,s’,a’} signals, hence the name of this
algorithm.
Procedural form of SARSA algorithm:

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
 Initialize s
 Choose a from s using policy derived from Q
 (e.g., ε-greedy)
 Repeat (for each step of episode):
 Take action a, observe r, s’

Choose a’ from s’ using policy derived from Q
(e.g., ε-greedy)

),()','((),(),(asQasQrasQasQ −⋅+⋅+← γα

s ← s’
a ← a’

159

 until s is terminal.

SARSA algorithm learns during the episode that

some policies are poor and switches to something
else searching better positive reinforcements.

3 POLICY CONTROL

Major difference between reinforcement learning
and supervised learning is that the agent must
explicitly explore its environment. It is very
important to make a good balance between intensive
exploration of the environment and the exploitation
of the learned policy to enhance the learning
performance.

There are three common policies used for action
selection (Eden & Knittel & Uffelen 2002):
− ε-greedy - most of the time the action with the

highest estimated reward is chosen, called the
greediest action but sometimes with a small
probability of ε, a random action is selected
uniformly, independent of the action-value
estimates. This method ensures that each action
will be tried many times, thus ensuring optimal
actions are discovered.

− ε-soft - very similar to ε-greedy. The best action
is selected with probability 1-ε and the rest of the
time a random action is chosen uniformly.

− softmax – one drawback of ε-greedy and ε-soft is
that they select random actions uniformly. The
worst possible action is just as likely to be
selected as the second best. Softmax remedies
this by assigning a rank or weight to each of the
actions, according to their action-value estimate.
A random action is selected with regards to the
weight associated with each action, meaning the
worst actions are unlikely to be chosen. This is a
good approach to take where the worst actions are
very unfavourable.
For example in ε-soft policy one can control

exploration vs. exploitation problem by decreasing
value of ε accordingly to learning process.

There are also other useful solutions described in
Kaelbling & Littman & Moore 1996.

4 SHIP HANDLING WITH RL

Main concept of this work is try to simulate with RL
a situation of ship manoeuvring through a restricted
coastal area (Fig. 2).

This task can be described in many ways. Most
important is to define proper state vector from
available data signals (Fig 3.), possible actions and
rewards received by the agent.

Goal

Fig. 2. Model of coastal environment

In this case the agent is the helmsman of the ship.
He observes current state which can consist
important signals like:
– position of ship in the area,
– ship’s course (ψ),
– angular velocity (r),
– risk of grounding.

Environment is everything what is outside of the
agent – in this case it is not only the restricted coast
area but also a vessel steered by the helmsman.

N

r

ψ

δ Goal
d

Fig. 3. Considered data signals of ship handling with RL.

Action available to take by the helmsman is one
of the rudder angles (δ). The agent receives, i.e. –1
reward in every time step, –100 when ship hits an
obstacle or run aground, +100 when ship reaches a

160

goal and –100 when she depart from the area in any
other way.

Fig. 4. Model of discretized world

There is of course many more useful signals e.g.
distance to goal (d), penalty for frequent course
change, negative reward for recede from goal. To
simplify calculations we assume that speed of the
ship is constant. Risk of grounding can be treated as
multi-criteria problem which calculates a danger of
getting stranded on shallow water. It can be
estimated by function of ship’s position, course and
angular velocity.

More signals in state vector and reward function
can improve projection of real coast situation to
estimated state value function but also can increase
computation complexity greatly. If one assume that
state vector is described by 100 x 100 matrix of
available position, 360 courses, 41 radial velocities
and 71 rudder angles it will make more than 1mln of
state-action pair real type values and it goes double
with eligibility traces. One can deal with this
problem by discretization of huge state space and
estimate state-action pair values with common
approximation methods.

In case of navigation task discretization of ship
position, course and rudder angle can significantly
improve learning rate with acceptable approximation
of overall model to real situation fidelity.

An example of discretized state space is shown in
figure 4. This is a part of application interface
created and tested by the author. Experimental
results showed that in simpler layouts of possible
routes and few obstacles reinforcement learning

SARSA algorithm was able to find proper although
not optimal helmsman behavior after about 800-
2000 epizodes.

There were other approaches containing weaker
discretization of state space and a maps with detailed
obstacles (i.e. shallow waters) like in figure 2.
Additionally to improve value backups in episodic
learning process an eligibility traces where used.

5 CONCLUSIONS

Experimental results with 1-step Q-Learning proves
its slow learning rate which is very inconvenient in
large state space problems. Eligibility traces, which
bring learning closer to Monte Carlo methods, have
improved learning speed. It was also very important
to dynamically change the learning parameters
during learning process.

SARSA algorithm uses longer but safer way
during learning process accordingly to its value
function update.

Using parameterised function approximation for
generalization (Sutton, R. 1996) or artificial neural
networks is the next step can improve reinforcement
learning process in ship handling.

Some other advanced algorithms like prioritized
sweeping can be taken into consideration in future
work.

Furthermore splitting one agent to multi-agent
environment could bring some new solutions to this
problem.

REFERENCES

Eden, T. Knittel, A., Uffelen, R. 2002. Reinforcement
Learning: Tutorial

Kaelbling, L.P. & Littman & Moore. 1996. Reinforcement
Learning: A Survey

The Reinforcement Learning Repository, University of
Massachusetts, Amherst

Sutton, R. 1996. Generalization in Reinforcement Learning:
Successful Examples Using Sparse Coarse Coding. In
Touretzky, D., Mozer, M., & Hasselmo, M. (Eds.), Neural
Information Processing Systems 8.

Sutton, R. & Barto, A. 1998. Reinforcement Learning:
An Introduction

Tesauro, G. 1995. Temporal Difference Learning and TD-
Gammon, Communications of the Association for
Computing Machinery, vol. 38, No. 3.

