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ABSTRACT: This paper presents the idea of using machine learning techniques to simulate and demonstrate 
learning behaviour in ship manoeuvring. Simulated model of ship is treated as an agent, which through 
environmental sensing learns itself to navigate through restricted waters selecting an optimum trajectory. 
Learning phase of the task is to observe current state and choose one of the available actions. The agent gets 
positive reward for reaching destination and negative reward for hitting an obstacle. Few reinforcement 
learning algorithms are considered. Experimental results based on simulation program are presented for 
different layouts of possible routes within restricted area.

1 INTRODUCTION 

Reinforcement Learning is actually a very actively 
researched topic in artificial intelligence. The main 
idea of reinforcement learning is based on agent 
interactions with environment (Fig 1.)  

 
Fig. 1. General reinforcement learning model 

The agent is a learning unit able to make 
decisions based on actual state and set of available 
actions. The outside element it interacts with is 
called the environment. In every time step agent 
choose one action and receives description of current 
situation from the environment. This situation is 
described by actual state and signal called reward. 
The agents goal is to maximize total amount of 
reward collected over time. In simplest case total 

accumulated reward is a sum of immediate rewards 
received in every step (Eq. 1). 
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where T = terminal (final) state. 
Some tasks have a continual character like 

process-control tasks thus there is no distinguished 
final state and T → ∞ . 

Additional useful concept in this case is 
discounting (Sutton & Barto 1998) (Eq. 2.) 
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where  γ = discount rate and 0 ≤ γ ≤ 1. 
The discount rate determines importance of future 

rewards. Reward received k time steps later is worth 
γk-1 times less what it would be worth when received 
immediately. If γ<1 then the infinite sum of rewards 
has a finite value. When γ is closer to one than agent 
takes future rewards into account more strongly thus 
it becomes more far-sighted. 
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Problems with delayed reinforcement are modeled 
as Markov Decision Processes (MDPs) (Kaelbling & 
Littman & Moore 1996). 

An MDP consists of: 
− a set of states S, 
− a set of actions A, 
− a reward function R : S × A → R 
− a state transition function T : S × A → P(S), 

where a member of P(S) is a probability 
distribution over the set S (i.e. it maps states to 
probabilities). We write T(s,a,s’) for the 
probability of making a transition from state s to 
state s’ using action  a. 
There is Markov Property that says that the model 

of environment is Markov if the state transitions are 
independent of any previous environment states or 
agent actions. 

During learning process agent will choose an 
action according to some general rules called policy, 
denoted as π. Policy is a mapping from states s and 
actions a to the probability of π(s,a) which is taking 
action a in state s. Value of a state under policy π,  
denoted as Vπ(s), is the expected return when agent 
starts in state s and follows policy  π.  
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 (3) 
Some detailed description of basic reinforcement 

learning algorithms is presented in the next chapter. 

2 ALGORITHMS 

2.1 V-Learning 
Reinforcement learning algorithms tries to estimate 
value functions – values of states that say how good  
it is for an agent to be in given state. 

In V-Learning algorithm agent learns value of 
visited states. The policy is created with one step 
state prediction for each action. 

))()'(()()( sVsVrsVsV −⋅+⋅+← γα  (4) 
where  V(s) = value of state s; V(s’) = value of next 
state s’; α = learning rate. 

2.2 Q-Learning 
Q-Learning algorithm (Sutton & Barto 1998) 
calculates values of state-action pairs. It tries to find 
an optimal state-action value function Q* 
independent of the policy being followed. This is 
off-policy temporal difference algorithm.  

In every step actual Q(s,a) value is updated with δ 
value calculated from gained reward and maximum 
possible value of next state-action value function. 

),()','(max asQasQr −⋅+← γδ  (5) 
where  r = immediate reward. 
Procedural form of Q-Learnig algorithm: 
Initialize  Q(s,a) arbitrarily 
Repeat (for each episode): 
 Initialize s 
 Repeat (for each step of episode): 
 Choose a from s using policy π derived from Q 

(e.g., ε-greedy) 
 Take action a, observe r, s’ 

 ),()','(max asQasQr −⋅+← γδ     
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s ← s’    
 until s is terminal. 

In this case an agent trained using an off-policy 
method may end up learning tactics that it did not 
necessarily exhibit during the learning phase – action 
corresponding to maximum possible state-action 
value may not be chosen. 

2.3 SARSA 
SARSA is on-policy temporal difference algorithm. 
For each step of episode Q(s,a) value is updated with 
values of {s,a,r,s’,a’} signals, hence the name of this 
algorithm.  
Procedural form of SARSA algorithm: 

 
Initialize Q(s,a) arbitrarily 
Repeat (for each episode): 
   Initialize s 
   Choose a from s using policy derived from Q 
         (e.g., ε-greedy) 
   Repeat (for each step of episode): 
      Take action a, observe r, s’ 

Choose a’ from s’ using policy derived from Q 
(e.g., ε-greedy)      

),()','((),(),( asQasQrasQasQ −⋅+⋅+← γα   

s ← s’    
a ← a’    
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   until s is terminal. 
 
SARSA algorithm learns during the episode that 

some policies are poor and switches to something 
else searching better positive reinforcements. 

3 POLICY CONTROL 

Major difference between reinforcement learning 
and supervised learning is that the agent must 
explicitly explore its environment. It is very 
important to make a good balance between intensive 
exploration of the environment and the exploitation 
of the learned policy to enhance the learning 
performance. 

There are three common policies used for action 
selection (Eden & Knittel & Uffelen 2002): 
− ε-greedy - most of the time the action with the 

highest estimated reward is chosen, called the 
greediest action but sometimes with a small 
probability of ε, a random action is selected 
uniformly, independent of the action-value 
estimates. This method ensures that each action 
will be tried many times, thus ensuring optimal 
actions are discovered.  

− ε-soft - very similar to ε-greedy. The best action 
is selected with probability 1-ε and the rest of the 
time a random action is chosen uniformly.  

− softmax – one drawback of ε-greedy and ε-soft is 
that they select random actions uniformly. The 
worst possible action is just as likely to be 
selected as the second best. Softmax remedies 
this by assigning a rank or weight to each of the 
actions, according to their action-value estimate. 
A random action is selected with regards to the 
weight associated with each action, meaning the 
worst actions are unlikely to be chosen. This is a 
good approach to take where the worst actions are 
very unfavourable. 
For example in ε-soft policy one can control 

exploration vs. exploitation problem by decreasing 
value of ε accordingly to learning process. 

There are also other useful solutions described in 
Kaelbling & Littman & Moore 1996. 

4 SHIP HANDLING WITH RL 

Main concept of this work is try to simulate with RL 
a situation of ship manoeuvring  through a restricted 
coastal area (Fig. 2). 

This task can be described in many ways. Most 
important is to define proper state vector from 
available data signals (Fig 3.), possible actions and 
rewards received by the agent. 

 

Goal 

 
Fig. 2. Model of coastal environment 

In this case the agent is the helmsman of the ship. 
He observes current state which can consist 
important signals like: 
– position of ship in the area, 
– ship’s course (ψ), 
– angular velocity (r), 
– risk of grounding. 

Environment is everything what is outside of the 
agent – in this case it is not only the restricted coast 
area but also a vessel steered by the helmsman. 

N 
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Fig. 3. Considered data signals of ship handling with RL. 

Action available to take by the helmsman is one 
of the rudder angles (δ). The agent receives, i.e. –1 
reward in every time step, –100 when ship hits an 
obstacle or run aground, +100 when ship reaches a 
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goal and –100 when she depart from the area in any 
other way. 

 
Fig. 4. Model of discretized world 

There is of course many more useful signals e.g. 
distance to goal (d), penalty for frequent course 
change, negative reward for recede from goal. To 
simplify calculations we assume that speed of the 
ship is constant. Risk of grounding can be treated as 
multi-criteria problem which calculates a danger of  
getting stranded on shallow water. It can be 
estimated by function of ship’s position, course and 
angular velocity.  

More signals in state vector and reward function 
can improve projection of real coast situation to 
estimated state value function but also can increase 
computation complexity greatly. If one assume that 
state vector is described by 100 x 100 matrix of 
available position, 360 courses, 41 radial velocities 
and 71 rudder angles it will make more than 1mln of 
state-action pair real type values and it goes double 
with eligibility traces. One can deal with this 
problem by discretization of huge state space and 
estimate state-action pair values with common 
approximation methods. 

In case of navigation task discretization of ship 
position, course and rudder angle can significantly 
improve learning rate with acceptable approximation 
of overall model to real situation fidelity. 

An example of discretized state space is shown in 
figure 4. This is a part of application interface 
created and tested by the author. Experimental 
results showed that in simpler layouts of possible 
routes and few obstacles reinforcement learning 

SARSA algorithm was able to find proper although 
not optimal helmsman behavior after about 800-
2000 epizodes.  

There were other approaches containing weaker 
discretization of state space and a maps with detailed 
obstacles (i.e. shallow waters) like in figure 2. 
Additionally to improve value backups in episodic 
learning process an eligibility traces where used. 

5 CONCLUSIONS 

Experimental results with 1-step Q-Learning proves 
its slow learning rate which is very inconvenient in 
large state space problems. Eligibility traces, which 
bring learning closer to Monte Carlo methods, have 
improved learning speed. It was also very important 
to dynamically change the learning parameters 
during learning process. 

SARSA algorithm uses longer but safer way 
during learning process accordingly to its value 
function update. 

Using parameterised function approximation for 
generalization (Sutton, R. 1996) or artificial neural 
networks is the next step can improve reinforcement 
learning process in ship handling. 

Some other advanced algorithms like prioritized 
sweeping can be taken into consideration in future 
work. 

Furthermore splitting one agent to multi-agent 
environment could bring some new solutions to this 
problem. 
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